Properties

Label 2-6-3.2-c8-0-1
Degree $2$
Conductor $6$
Sign $-0.628 + 0.777i$
Analytic cond. $2.44427$
Root an. cond. $1.56341$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 11.3i·2-s + (−63 − 50.9i)3-s − 128.·4-s − 576. i·5-s + (−576 + 712. i)6-s + 2.78e3·7-s + 1.44e3i·8-s + (1.37e3 + 6.41e3i)9-s − 6.52e3·10-s − 2.24e4i·11-s + (8.06e3 + 6.51e3i)12-s − 1.31e4·13-s − 3.15e4i·14-s + (−2.93e4 + 3.63e4i)15-s + 1.63e4·16-s + 6.63e4i·17-s + ⋯
L(s)  = 1  − 0.707i·2-s + (−0.777 − 0.628i)3-s − 0.500·4-s − 0.923i·5-s + (−0.444 + 0.549i)6-s + 1.16·7-s + 0.353i·8-s + (0.209 + 0.977i)9-s − 0.652·10-s − 1.53i·11-s + (0.388 + 0.314i)12-s − 0.460·13-s − 0.820i·14-s + (−0.580 + 0.718i)15-s + 0.250·16-s + 0.794i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.628 + 0.777i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.628 + 0.777i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6\)    =    \(2 \cdot 3\)
Sign: $-0.628 + 0.777i$
Analytic conductor: \(2.44427\)
Root analytic conductor: \(1.56341\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{6} (5, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 6,\ (\ :4),\ -0.628 + 0.777i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.442514 - 0.926553i\)
\(L(\frac12)\) \(\approx\) \(0.442514 - 0.926553i\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 11.3iT \)
3 \( 1 + (63 + 50.9i)T \)
good5 \( 1 + 576. iT - 3.90e5T^{2} \)
7 \( 1 - 2.78e3T + 5.76e6T^{2} \)
11 \( 1 + 2.24e4iT - 2.14e8T^{2} \)
13 \( 1 + 1.31e4T + 8.15e8T^{2} \)
17 \( 1 - 6.63e4iT - 6.97e9T^{2} \)
19 \( 1 - 1.44e5T + 1.69e10T^{2} \)
23 \( 1 + 4.93e4iT - 7.83e10T^{2} \)
29 \( 1 - 6.27e5iT - 5.00e11T^{2} \)
31 \( 1 - 7.28e5T + 8.52e11T^{2} \)
37 \( 1 + 1.96e6T + 3.51e12T^{2} \)
41 \( 1 + 9.86e5iT - 7.98e12T^{2} \)
43 \( 1 + 7.81e4T + 1.16e13T^{2} \)
47 \( 1 - 3.51e6iT - 2.38e13T^{2} \)
53 \( 1 + 5.22e5iT - 6.22e13T^{2} \)
59 \( 1 - 5.00e6iT - 1.46e14T^{2} \)
61 \( 1 - 1.75e7T + 1.91e14T^{2} \)
67 \( 1 + 1.71e7T + 4.06e14T^{2} \)
71 \( 1 + 2.58e7iT - 6.45e14T^{2} \)
73 \( 1 - 2.81e7T + 8.06e14T^{2} \)
79 \( 1 - 9.18e6T + 1.51e15T^{2} \)
83 \( 1 - 8.71e7iT - 2.25e15T^{2} \)
89 \( 1 - 8.12e7iT - 3.93e15T^{2} \)
97 \( 1 + 1.28e8T + 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−20.89584655302333174624205760107, −19.27614328231768897055248638516, −17.83556206177773251820734599158, −16.58171257300205966983593566690, −13.83286907179083159349749942332, −12.26671734216539629219257399060, −10.99764242447386960739802118707, −8.338277152980955213364917201137, −5.20770109877216866850706186223, −1.11307400118176072275291948040, 4.89825008444268207342800220819, 7.17854412970097166907759560186, 9.952645771016127759046600591714, 11.73615780025091426231820046210, 14.45977038491012259071190772770, 15.50932813861659101071182746475, 17.38711976545548378528274612167, 18.18511240999852865890420946834, 20.71922738888534525984863229335, 22.29562385070242310283253082095

Graph of the $Z$-function along the critical line