Properties

Label 16-6e8-1.1-c22e8-0-0
Degree $16$
Conductor $1679616$
Sign $1$
Analytic cond. $1.31523\times 10^{10}$
Root an. cond. $4.28980$
Motivic weight $22$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6.97e4·3-s − 8.38e6·4-s + 5.64e9·7-s − 2.43e10·9-s + 5.84e11·12-s − 2.87e12·13-s + 4.39e13·16-s − 3.14e14·19-s − 3.93e14·21-s + 6.40e15·25-s + 5.73e15·27-s − 4.73e16·28-s − 1.10e17·31-s + 2.04e17·36-s − 7.52e17·37-s + 2.00e17·39-s − 1.30e18·43-s − 3.06e18·48-s + 6.31e18·49-s + 2.41e19·52-s + 2.19e19·57-s − 1.24e20·61-s − 1.37e20·63-s − 1.84e20·64-s − 3.49e20·67-s − 6.55e19·73-s − 4.46e20·75-s + ⋯
L(s)  = 1  − 0.393·3-s − 2·4-s + 2.85·7-s − 0.776·9-s + 0.787·12-s − 1.60·13-s + 5/2·16-s − 2.70·19-s − 1.12·21-s + 2.68·25-s + 1.03·27-s − 5.71·28-s − 4.34·31-s + 1.55·36-s − 4.22·37-s + 0.631·39-s − 1.40·43-s − 0.983·48-s + 1.61·49-s + 3.20·52-s + 1.06·57-s − 2.85·61-s − 2.21·63-s − 5/2·64-s − 2.86·67-s − 0.209·73-s − 1.05·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1679616 ^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr =\mathstrut & \, \Lambda(23-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1679616 ^{s/2} \, \Gamma_{\C}(s+11)^{8} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(1679616\)    =    \(2^{8} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(1.31523\times 10^{10}\)
Root analytic conductor: \(4.28980\)
Motivic weight: \(22\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 1679616,\ (\ :[11]^{8}),\ 1)\)

Particular Values

\(L(\frac{23}{2})\) \(\approx\) \(0.006966289427\)
\(L(\frac12)\) \(\approx\) \(0.006966289427\)
\(L(12)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 + p^{21} T^{2} )^{4} \)
3 \( 1 + 23240 p T + 360822268 p^{4} T^{2} - 33772184600 p^{10} T^{3} + 242900943238 p^{20} T^{4} - 33772184600 p^{32} T^{5} + 360822268 p^{48} T^{6} + 23240 p^{67} T^{7} + p^{88} T^{8} \)
good5 \( 1 - 1280906811524008 p T^{2} + \)\(90\!\cdots\!16\)\( p^{2} T^{4} - \)\(94\!\cdots\!56\)\( p^{7} T^{6} + \)\(83\!\cdots\!54\)\( p^{12} T^{8} - \)\(94\!\cdots\!56\)\( p^{51} T^{10} + \)\(90\!\cdots\!16\)\( p^{90} T^{12} - 1280906811524008 p^{133} T^{14} + p^{176} T^{16} \)
7 \( ( 1 - 2822790920 T + 1256624077538293444 p T^{2} - \)\(86\!\cdots\!00\)\( p^{4} T^{3} + \)\(22\!\cdots\!58\)\( p^{4} T^{4} - \)\(86\!\cdots\!00\)\( p^{26} T^{5} + 1256624077538293444 p^{45} T^{6} - 2822790920 p^{66} T^{7} + p^{88} T^{8} )^{2} \)
11 \( 1 - \)\(17\!\cdots\!80\)\( p T^{2} + \)\(58\!\cdots\!84\)\( p^{2} T^{4} + \)\(19\!\cdots\!60\)\( p^{3} T^{6} - \)\(14\!\cdots\!54\)\( p^{4} T^{8} + \)\(19\!\cdots\!60\)\( p^{47} T^{10} + \)\(58\!\cdots\!84\)\( p^{90} T^{12} - \)\(17\!\cdots\!80\)\( p^{133} T^{14} + p^{176} T^{16} \)
13 \( ( 1 + 1437841190680 T + \)\(68\!\cdots\!76\)\( T^{2} + \)\(11\!\cdots\!20\)\( p T^{3} + \)\(14\!\cdots\!14\)\( p^{2} T^{4} + \)\(11\!\cdots\!20\)\( p^{23} T^{5} + \)\(68\!\cdots\!76\)\( p^{44} T^{6} + 1437841190680 p^{66} T^{7} + p^{88} T^{8} )^{2} \)
17 \( 1 - \)\(68\!\cdots\!20\)\( T^{2} + \)\(77\!\cdots\!36\)\( p^{2} T^{4} - \)\(55\!\cdots\!60\)\( p^{4} T^{6} + \)\(27\!\cdots\!94\)\( p^{6} T^{8} - \)\(55\!\cdots\!60\)\( p^{48} T^{10} + \)\(77\!\cdots\!36\)\( p^{90} T^{12} - \)\(68\!\cdots\!20\)\( p^{132} T^{14} + p^{176} T^{16} \)
19 \( ( 1 + 157401978775768 T + \)\(12\!\cdots\!92\)\( p T^{2} + \)\(42\!\cdots\!16\)\( p^{2} T^{3} + \)\(20\!\cdots\!10\)\( p^{3} T^{4} + \)\(42\!\cdots\!16\)\( p^{24} T^{5} + \)\(12\!\cdots\!92\)\( p^{45} T^{6} + 157401978775768 p^{66} T^{7} + p^{88} T^{8} )^{2} \)
23 \( 1 - \)\(26\!\cdots\!60\)\( T^{2} + \)\(29\!\cdots\!84\)\( T^{4} - \)\(31\!\cdots\!80\)\( T^{6} + \)\(33\!\cdots\!26\)\( T^{8} - \)\(31\!\cdots\!80\)\( p^{44} T^{10} + \)\(29\!\cdots\!84\)\( p^{88} T^{12} - \)\(26\!\cdots\!60\)\( p^{132} T^{14} + p^{176} T^{16} \)
29 \( 1 - \)\(10\!\cdots\!08\)\( T^{2} + \)\(47\!\cdots\!48\)\( T^{4} - \)\(13\!\cdots\!76\)\( T^{6} + \)\(23\!\cdots\!70\)\( T^{8} - \)\(13\!\cdots\!76\)\( p^{44} T^{10} + \)\(47\!\cdots\!48\)\( p^{88} T^{12} - \)\(10\!\cdots\!08\)\( p^{132} T^{14} + p^{176} T^{16} \)
31 \( ( 1 + 55146614124607288 T + \)\(28\!\cdots\!48\)\( T^{2} + \)\(10\!\cdots\!96\)\( T^{3} + \)\(28\!\cdots\!70\)\( T^{4} + \)\(10\!\cdots\!96\)\( p^{22} T^{5} + \)\(28\!\cdots\!48\)\( p^{44} T^{6} + 55146614124607288 p^{66} T^{7} + p^{88} T^{8} )^{2} \)
37 \( ( 1 + 376245183281642200 T + \)\(13\!\cdots\!88\)\( T^{2} + \)\(27\!\cdots\!40\)\( T^{3} + \)\(59\!\cdots\!98\)\( T^{4} + \)\(27\!\cdots\!40\)\( p^{22} T^{5} + \)\(13\!\cdots\!88\)\( p^{44} T^{6} + 376245183281642200 p^{66} T^{7} + p^{88} T^{8} )^{2} \)
41 \( 1 - \)\(15\!\cdots\!40\)\( T^{2} + \)\(11\!\cdots\!24\)\( T^{4} - \)\(59\!\cdots\!20\)\( T^{6} + \)\(21\!\cdots\!86\)\( T^{8} - \)\(59\!\cdots\!20\)\( p^{44} T^{10} + \)\(11\!\cdots\!24\)\( p^{88} T^{12} - \)\(15\!\cdots\!40\)\( p^{132} T^{14} + p^{176} T^{16} \)
43 \( ( 1 + 650507781721037080 T + \)\(13\!\cdots\!04\)\( T^{2} + \)\(10\!\cdots\!60\)\( T^{3} + \)\(14\!\cdots\!46\)\( T^{4} + \)\(10\!\cdots\!60\)\( p^{22} T^{5} + \)\(13\!\cdots\!04\)\( p^{44} T^{6} + 650507781721037080 p^{66} T^{7} + p^{88} T^{8} )^{2} \)
47 \( 1 - \)\(20\!\cdots\!72\)\( T^{2} + \)\(19\!\cdots\!68\)\( T^{4} - \)\(14\!\cdots\!24\)\( T^{6} + \)\(10\!\cdots\!70\)\( T^{8} - \)\(14\!\cdots\!24\)\( p^{44} T^{10} + \)\(19\!\cdots\!68\)\( p^{88} T^{12} - \)\(20\!\cdots\!72\)\( p^{132} T^{14} + p^{176} T^{16} \)
53 \( 1 - \)\(40\!\cdots\!40\)\( T^{2} + \)\(84\!\cdots\!44\)\( T^{4} - \)\(11\!\cdots\!20\)\( T^{6} + \)\(11\!\cdots\!06\)\( T^{8} - \)\(11\!\cdots\!20\)\( p^{44} T^{10} + \)\(84\!\cdots\!44\)\( p^{88} T^{12} - \)\(40\!\cdots\!40\)\( p^{132} T^{14} + p^{176} T^{16} \)
59 \( 1 - \)\(35\!\cdots\!60\)\( T^{2} + \)\(74\!\cdots\!64\)\( T^{4} - \)\(10\!\cdots\!80\)\( T^{6} + \)\(11\!\cdots\!66\)\( T^{8} - \)\(10\!\cdots\!80\)\( p^{44} T^{10} + \)\(74\!\cdots\!64\)\( p^{88} T^{12} - \)\(35\!\cdots\!60\)\( p^{132} T^{14} + p^{176} T^{16} \)
61 \( ( 1 + 62207640705914143384 T + \)\(70\!\cdots\!60\)\( T^{2} + \)\(31\!\cdots\!96\)\( T^{3} + \)\(20\!\cdots\!74\)\( T^{4} + \)\(31\!\cdots\!96\)\( p^{22} T^{5} + \)\(70\!\cdots\!60\)\( p^{44} T^{6} + 62207640705914143384 p^{66} T^{7} + p^{88} T^{8} )^{2} \)
67 \( ( 1 + \)\(17\!\cdots\!40\)\( T + \)\(39\!\cdots\!08\)\( T^{2} + \)\(32\!\cdots\!80\)\( T^{3} + \)\(58\!\cdots\!18\)\( T^{4} + \)\(32\!\cdots\!80\)\( p^{22} T^{5} + \)\(39\!\cdots\!08\)\( p^{44} T^{6} + \)\(17\!\cdots\!40\)\( p^{66} T^{7} + p^{88} T^{8} )^{2} \)
71 \( 1 - \)\(93\!\cdots\!08\)\( T^{2} + \)\(13\!\cdots\!48\)\( T^{4} - \)\(79\!\cdots\!76\)\( T^{6} + \)\(60\!\cdots\!70\)\( T^{8} - \)\(79\!\cdots\!76\)\( p^{44} T^{10} + \)\(13\!\cdots\!48\)\( p^{88} T^{12} - \)\(93\!\cdots\!08\)\( p^{132} T^{14} + p^{176} T^{16} \)
73 \( ( 1 + 32788189594240031800 T + \)\(37\!\cdots\!96\)\( T^{2} + \)\(91\!\cdots\!00\)\( T^{3} + \)\(54\!\cdots\!86\)\( T^{4} + \)\(91\!\cdots\!00\)\( p^{22} T^{5} + \)\(37\!\cdots\!96\)\( p^{44} T^{6} + 32788189594240031800 p^{66} T^{7} + p^{88} T^{8} )^{2} \)
79 \( ( 1 + \)\(16\!\cdots\!72\)\( T + \)\(16\!\cdots\!28\)\( T^{2} + \)\(26\!\cdots\!04\)\( T^{3} + \)\(11\!\cdots\!90\)\( T^{4} + \)\(26\!\cdots\!04\)\( p^{22} T^{5} + \)\(16\!\cdots\!28\)\( p^{44} T^{6} + \)\(16\!\cdots\!72\)\( p^{66} T^{7} + p^{88} T^{8} )^{2} \)
83 \( 1 - \)\(98\!\cdots\!24\)\( T^{2} + \)\(44\!\cdots\!80\)\( T^{4} - \)\(12\!\cdots\!36\)\( T^{6} + \)\(24\!\cdots\!54\)\( T^{8} - \)\(12\!\cdots\!36\)\( p^{44} T^{10} + \)\(44\!\cdots\!80\)\( p^{88} T^{12} - \)\(98\!\cdots\!24\)\( p^{132} T^{14} + p^{176} T^{16} \)
89 \( 1 - \)\(31\!\cdots\!80\)\( T^{2} + \)\(65\!\cdots\!56\)\( p T^{4} - \)\(68\!\cdots\!40\)\( T^{6} + \)\(15\!\cdots\!26\)\( T^{8} - \)\(68\!\cdots\!40\)\( p^{44} T^{10} + \)\(65\!\cdots\!56\)\( p^{89} T^{12} - \)\(31\!\cdots\!80\)\( p^{132} T^{14} + p^{176} T^{16} \)
97 \( ( 1 + \)\(11\!\cdots\!60\)\( T + \)\(25\!\cdots\!24\)\( T^{2} + \)\(19\!\cdots\!80\)\( T^{3} + \)\(20\!\cdots\!66\)\( T^{4} + \)\(19\!\cdots\!80\)\( p^{22} T^{5} + \)\(25\!\cdots\!24\)\( p^{44} T^{6} + \)\(11\!\cdots\!60\)\( p^{66} T^{7} + p^{88} T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.39435692315290611878426193626, −6.09495039423803243113102479723, −5.45658853996681905254703520336, −5.40189581110705210435723816819, −5.26004700493996373502867673102, −5.14407975236591586907266250326, −5.01628889945769371015073619751, −4.55436833473363802863138654614, −4.47412004923420377580163612198, −4.45648588002448971467640395862, −3.90710419240821869368418732219, −3.69332664456683175345029923095, −3.50849191734711728377163142319, −3.06803317682154199827231342508, −2.78652067886083854168466816341, −2.53470554810822639501796941672, −2.27437853850720479353592392927, −1.73250506297629130202421026732, −1.58694709829130444936881517984, −1.42058027988970993848839809919, −1.36193409838823260870900480250, −1.23420671005004624428010884420, −0.23890983665366691288940407413, −0.096661174551647009121265830908, −0.07868669097901799890719335962, 0.07868669097901799890719335962, 0.096661174551647009121265830908, 0.23890983665366691288940407413, 1.23420671005004624428010884420, 1.36193409838823260870900480250, 1.42058027988970993848839809919, 1.58694709829130444936881517984, 1.73250506297629130202421026732, 2.27437853850720479353592392927, 2.53470554810822639501796941672, 2.78652067886083854168466816341, 3.06803317682154199827231342508, 3.50849191734711728377163142319, 3.69332664456683175345029923095, 3.90710419240821869368418732219, 4.45648588002448971467640395862, 4.47412004923420377580163612198, 4.55436833473363802863138654614, 5.01628889945769371015073619751, 5.14407975236591586907266250326, 5.26004700493996373502867673102, 5.40189581110705210435723816819, 5.45658853996681905254703520336, 6.09495039423803243113102479723, 6.39435692315290611878426193626

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.