Properties

Label 2-588-3.2-c2-0-2
Degree $2$
Conductor $588$
Sign $-0.666 + 0.745i$
Analytic cond. $16.0218$
Root an. cond. $4.00272$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2 + 2.23i)3-s + 6.70i·5-s + (−1.00 − 8.94i)9-s + 6.70i·11-s − 14·13-s + (−15.0 − 13.4i)15-s + 26.8i·17-s − 8·19-s + 13.4i·23-s − 20.0·25-s + (22.0 + 15.6i)27-s − 46.9i·29-s + 31·31-s + (−15.0 − 13.4i)33-s − 28·37-s + ⋯
L(s)  = 1  + (−0.666 + 0.745i)3-s + 1.34i·5-s + (−0.111 − 0.993i)9-s + 0.609i·11-s − 1.07·13-s + (−1 − 0.894i)15-s + 1.57i·17-s − 0.421·19-s + 0.583i·23-s − 0.800·25-s + (0.814 + 0.579i)27-s − 1.61i·29-s + 31-s + (−0.454 − 0.406i)33-s − 0.756·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.666 + 0.745i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.666 + 0.745i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(588\)    =    \(2^{2} \cdot 3 \cdot 7^{2}\)
Sign: $-0.666 + 0.745i$
Analytic conductor: \(16.0218\)
Root analytic conductor: \(4.00272\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{588} (197, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 588,\ (\ :1),\ -0.666 + 0.745i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.4554832665\)
\(L(\frac12)\) \(\approx\) \(0.4554832665\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (2 - 2.23i)T \)
7 \( 1 \)
good5 \( 1 - 6.70iT - 25T^{2} \)
11 \( 1 - 6.70iT - 121T^{2} \)
13 \( 1 + 14T + 169T^{2} \)
17 \( 1 - 26.8iT - 289T^{2} \)
19 \( 1 + 8T + 361T^{2} \)
23 \( 1 - 13.4iT - 529T^{2} \)
29 \( 1 + 46.9iT - 841T^{2} \)
31 \( 1 - 31T + 961T^{2} \)
37 \( 1 + 28T + 1.36e3T^{2} \)
41 \( 1 + 67.0iT - 1.68e3T^{2} \)
43 \( 1 + 52T + 1.84e3T^{2} \)
47 \( 1 + 40.2iT - 2.20e3T^{2} \)
53 \( 1 + 6.70iT - 2.80e3T^{2} \)
59 \( 1 - 20.1iT - 3.48e3T^{2} \)
61 \( 1 + 14T + 3.72e3T^{2} \)
67 \( 1 + 4T + 4.48e3T^{2} \)
71 \( 1 - 40.2iT - 5.04e3T^{2} \)
73 \( 1 + 98T + 5.32e3T^{2} \)
79 \( 1 - 101T + 6.24e3T^{2} \)
83 \( 1 - 87.2iT - 6.88e3T^{2} \)
89 \( 1 + 67.0iT - 7.92e3T^{2} \)
97 \( 1 - 13T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.82814490971174592281727807401, −10.21224849833442047387093080856, −9.754279729321019567060758048347, −8.426943647766531072927289793921, −7.24296092559417277538933552567, −6.51812577972347896147062893766, −5.63055846787275580477636417100, −4.43098373758325541655009719846, −3.51010885759090636228886126646, −2.20164880660860203509727839033, 0.19406031293199586909545254811, 1.31374718233180899021946460016, 2.80778449839879205435168369357, 4.84669662174245123723607980174, 4.98883866185677708130807945783, 6.29118861602379451829732844858, 7.21820112608773065754999210266, 8.166884278255222912740524296203, 8.934998271972651614091197447185, 9.906590714202482069088939543627

Graph of the $Z$-function along the critical line