Properties

Degree $2$
Conductor $588$
Sign $0.991 - 0.126i$
Motivic weight $1$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 − 0.866i)3-s + (1 + 1.73i)5-s + (−0.499 − 0.866i)9-s + (−1 + 1.73i)11-s + 4·13-s + 1.99·15-s + (3 − 5.19i)17-s + (4 + 6.92i)19-s + (3 + 5.19i)23-s + (0.500 − 0.866i)25-s − 0.999·27-s − 10·29-s + (2 − 3.46i)31-s + (0.999 + 1.73i)33-s + (−3 − 5.19i)37-s + ⋯
L(s)  = 1  + (0.288 − 0.499i)3-s + (0.447 + 0.774i)5-s + (−0.166 − 0.288i)9-s + (−0.301 + 0.522i)11-s + 1.10·13-s + 0.516·15-s + (0.727 − 1.26i)17-s + (0.917 + 1.58i)19-s + (0.625 + 1.08i)23-s + (0.100 − 0.173i)25-s − 0.192·27-s − 1.85·29-s + (0.359 − 0.622i)31-s + (0.174 + 0.301i)33-s + (−0.493 − 0.854i)37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 - 0.126i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.991 - 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(588\)    =    \(2^{2} \cdot 3 \cdot 7^{2}\)
Sign: $0.991 - 0.126i$
Motivic weight: \(1\)
Character: $\chi_{588} (361, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 588,\ (\ :1/2),\ 0.991 - 0.126i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.80707 + 0.114677i\)
\(L(\frac12)\) \(\approx\) \(1.80707 + 0.114677i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-0.5 + 0.866i)T \)
7 \( 1 \)
good5 \( 1 + (-1 - 1.73i)T + (-2.5 + 4.33i)T^{2} \)
11 \( 1 + (1 - 1.73i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 - 4T + 13T^{2} \)
17 \( 1 + (-3 + 5.19i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-4 - 6.92i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-3 - 5.19i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + 10T + 29T^{2} \)
31 \( 1 + (-2 + 3.46i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (3 + 5.19i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 - 6T + 41T^{2} \)
43 \( 1 - 4T + 43T^{2} \)
47 \( 1 + (-4 - 6.92i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (1 - 1.73i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (2 - 3.46i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (4 + 6.92i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (-4 + 6.92i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + 10T + 71T^{2} \)
73 \( 1 + (-2 + 3.46i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (2 + 3.46i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + 12T + 83T^{2} \)
89 \( 1 + (7 + 12.1i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + 4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.73965459330473160920261018699, −9.731319955720249993534157848566, −9.142962783455452026301481432854, −7.63984826694279960957230548952, −7.45629129092727535273265018336, −6.11892232742314159672942746422, −5.47156165595483659599096975733, −3.78106439838390656310252233410, −2.82157880809136794235737109534, −1.48454647706044124862202797041, 1.23553727931513015429673319306, 2.91728336039430706781360995339, 4.01716907375447724638111147930, 5.18891765822095017483420416119, 5.85860392646274529244502887464, 7.14265581430412680312797508121, 8.412426757454182326040029176675, 8.835877260878964498105470781262, 9.688946276586426160804765139668, 10.72778583873254232817321505124

Graph of the $Z$-function along the critical line