Properties

Degree 2
Conductor $ 2^{2} \cdot 3 \cdot 7^{2} $
Sign $0.991 - 0.126i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 + 0.866i)3-s + (−0.499 − 0.866i)9-s + (3 − 5.19i)11-s + 2·13-s + (2 + 3.46i)19-s + (3 + 5.19i)23-s + (2.5 − 4.33i)25-s + 0.999·27-s + 6·29-s + (−4 + 6.92i)31-s + (3 + 5.19i)33-s + (−1 − 1.73i)37-s + (−1 + 1.73i)39-s + 12·41-s − 4·43-s + ⋯
L(s)  = 1  + (−0.288 + 0.499i)3-s + (−0.166 − 0.288i)9-s + (0.904 − 1.56i)11-s + 0.554·13-s + (0.458 + 0.794i)19-s + (0.625 + 1.08i)23-s + (0.5 − 0.866i)25-s + 0.192·27-s + 1.11·29-s + (−0.718 + 1.24i)31-s + (0.522 + 0.904i)33-s + (−0.164 − 0.284i)37-s + (−0.160 + 0.277i)39-s + 1.87·41-s − 0.609·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 - 0.126i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.991 - 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(588\)    =    \(2^{2} \cdot 3 \cdot 7^{2}\)
\( \varepsilon \)  =  $0.991 - 0.126i$
motivic weight  =  \(1\)
character  :  $\chi_{588} (361, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 588,\ (\ :1/2),\ 0.991 - 0.126i)\)
\(L(1)\)  \(\approx\)  \(1.43102 + 0.0908128i\)
\(L(\frac12)\)  \(\approx\)  \(1.43102 + 0.0908128i\)
\(L(\frac{3}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (0.5 - 0.866i)T \)
7 \( 1 \)
good5 \( 1 + (-2.5 + 4.33i)T^{2} \)
11 \( 1 + (-3 + 5.19i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 - 2T + 13T^{2} \)
17 \( 1 + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-2 - 3.46i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-3 - 5.19i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 - 6T + 29T^{2} \)
31 \( 1 + (4 - 6.92i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (1 + 1.73i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 - 12T + 41T^{2} \)
43 \( 1 + 4T + 43T^{2} \)
47 \( 1 + (6 + 10.3i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (-3 + 5.19i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (-5 - 8.66i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (4 - 6.92i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 - 6T + 71T^{2} \)
73 \( 1 + (-5 + 8.66i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-2 - 3.46i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + 12T + 83T^{2} \)
89 \( 1 + (6 + 10.3i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + 10T + 97T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−10.79094653225598986408776129999, −9.903872468831631807239936662163, −8.870941719115200052223813108011, −8.367263437544741754394906904257, −6.97205489038106508013561606991, −6.05518776469725952841377631409, −5.28038697610206779737532920156, −3.92971438854184200707455607170, −3.16765464597929940935755513166, −1.11439675822313629821117992368, 1.23902767568951116073407019843, 2.62376870101628358339758927299, 4.17534176358488821742811419980, 5.06811282590913572284262078589, 6.37666893824194792476706273193, 6.97806787793626094328148046787, 7.87656267761473699156152974313, 9.055002276238311523165184370499, 9.675379819704747705888887866276, 10.87020691644171622528047026403

Graph of the $Z$-function along the critical line