Properties

Label 8-5850e4-1.1-c1e4-0-1
Degree $8$
Conductor $1.171\times 10^{15}$
Sign $1$
Analytic cond. $4.76136\times 10^{6}$
Root an. cond. $6.83465$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 6·11-s + 3·16-s − 6·19-s − 2·31-s + 2·41-s + 12·44-s + 3·49-s − 2·59-s + 18·61-s − 4·64-s − 6·71-s + 12·76-s + 10·79-s + 20·89-s − 14·101-s − 30·109-s − 121-s + 4·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + ⋯
L(s)  = 1  − 4-s − 1.80·11-s + 3/4·16-s − 1.37·19-s − 0.359·31-s + 0.312·41-s + 1.80·44-s + 3/7·49-s − 0.260·59-s + 2.30·61-s − 1/2·64-s − 0.712·71-s + 1.37·76-s + 1.12·79-s + 2.11·89-s − 1.39·101-s − 2.87·109-s − 0.0909·121-s + 0.359·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 5^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 5^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{8} \cdot 5^{8} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(4.76136\times 10^{6}\)
Root analytic conductor: \(6.83465\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{8} \cdot 5^{8} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.05720702914\)
\(L(\frac12)\) \(\approx\) \(0.05720702914\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T^{2} )^{2} \)
3 \( 1 \)
5 \( 1 \)
13$C_2$ \( ( 1 + T^{2} )^{2} \)
good7$D_4\times C_2$ \( 1 - 3 T^{2} + 8 T^{4} - 3 p^{2} T^{6} + p^{4} T^{8} \)
11$C_2^2$ \( ( 1 + 3 T + 14 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 - 35 T^{2} + 628 T^{4} - 35 p^{2} T^{6} + p^{4} T^{8} \)
19$D_{4}$ \( ( 1 + 3 T + 30 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2$ \( ( 1 - p T^{2} )^{4} \)
29$C_2^2$ \( ( 1 + 17 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + T - 30 T^{2} + p T^{3} + p^{2} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 123 T^{2} + 6428 T^{4} - 123 p^{2} T^{6} + p^{4} T^{8} \)
41$D_{4}$ \( ( 1 - T + 72 T^{2} - p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 40 T^{2} - 2 T^{4} - 40 p^{2} T^{6} + p^{4} T^{8} \)
47$C_2^2$ \( ( 1 - 45 T^{2} + p^{2} T^{4} )^{2} \)
53$D_4\times C_2$ \( 1 - 98 T^{2} + 5395 T^{4} - 98 p^{2} T^{6} + p^{4} T^{8} \)
59$D_{4}$ \( ( 1 + T + 108 T^{2} + p T^{3} + p^{2} T^{4} )^{2} \)
61$D_{4}$ \( ( 1 - 9 T + 50 T^{2} - 9 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 93 T^{2} + p^{2} T^{4} )^{2} \)
71$D_{4}$ \( ( 1 + 3 T + 134 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
79$D_{4}$ \( ( 1 - 5 T + 154 T^{2} - 5 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 199 T^{2} + 21372 T^{4} - 199 p^{2} T^{6} + p^{4} T^{8} \)
89$D_{4}$ \( ( 1 - 10 T + 162 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 144 T^{2} + 10718 T^{4} - 144 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.49581999486699338154581736490, −5.38766298789659159898101835892, −5.37683820193734443211639999378, −5.17543946727932166329508234153, −5.05259643204581037110378371737, −4.72142197772678143095497659108, −4.58867183108736935619249509373, −4.26356039615854689577666172016, −4.22110443072731511381924566993, −3.97380703888279891457988498970, −3.92834629825321740830013087038, −3.54058451163298191438397200033, −3.24933086278471458165605094752, −3.18835277127837110534785680603, −3.06136439019000916426024322383, −2.47469667524298360828968110094, −2.38681239480376779599892567061, −2.27973483301547936810215092228, −2.25868507476286014158407198110, −1.75386455608993649491563654402, −1.37794086061822785142910042446, −1.13493562916460593838828628316, −0.909900953948142105451136225156, −0.41657384959657964327298468532, −0.04965785230790424375785183233, 0.04965785230790424375785183233, 0.41657384959657964327298468532, 0.909900953948142105451136225156, 1.13493562916460593838828628316, 1.37794086061822785142910042446, 1.75386455608993649491563654402, 2.25868507476286014158407198110, 2.27973483301547936810215092228, 2.38681239480376779599892567061, 2.47469667524298360828968110094, 3.06136439019000916426024322383, 3.18835277127837110534785680603, 3.24933086278471458165605094752, 3.54058451163298191438397200033, 3.92834629825321740830013087038, 3.97380703888279891457988498970, 4.22110443072731511381924566993, 4.26356039615854689577666172016, 4.58867183108736935619249509373, 4.72142197772678143095497659108, 5.05259643204581037110378371737, 5.17543946727932166329508234153, 5.37683820193734443211639999378, 5.38766298789659159898101835892, 5.49581999486699338154581736490

Graph of the $Z$-function along the critical line