Properties

Label 2-5850-1.1-c1-0-81
Degree $2$
Conductor $5850$
Sign $-1$
Analytic cond. $46.7124$
Root an. cond. $6.83465$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 4·7-s − 8-s − 13-s − 4·14-s + 16-s + 6·17-s − 4·19-s − 6·23-s + 26-s + 4·28-s − 6·29-s − 10·31-s − 32-s − 6·34-s + 10·37-s + 4·38-s − 6·41-s + 4·43-s + 6·46-s − 12·47-s + 9·49-s − 52-s − 12·53-s − 4·56-s + 6·58-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 1.51·7-s − 0.353·8-s − 0.277·13-s − 1.06·14-s + 1/4·16-s + 1.45·17-s − 0.917·19-s − 1.25·23-s + 0.196·26-s + 0.755·28-s − 1.11·29-s − 1.79·31-s − 0.176·32-s − 1.02·34-s + 1.64·37-s + 0.648·38-s − 0.937·41-s + 0.609·43-s + 0.884·46-s − 1.75·47-s + 9/7·49-s − 0.138·52-s − 1.64·53-s − 0.534·56-s + 0.787·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5850\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(46.7124\)
Root analytic conductor: \(6.83465\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5850,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 + T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.908623718672730424328179759501, −7.42255676240836548270454419061, −6.31753294995797634546418099914, −5.66825166690823221850353693800, −4.90456128216973321171866465162, −4.08934514629340824000125194626, −3.12953578086723917615061490149, −1.91306337254860114149678235658, −1.51795954928522912559953276172, 0, 1.51795954928522912559953276172, 1.91306337254860114149678235658, 3.12953578086723917615061490149, 4.08934514629340824000125194626, 4.90456128216973321171866465162, 5.66825166690823221850353693800, 6.31753294995797634546418099914, 7.42255676240836548270454419061, 7.908623718672730424328179759501

Graph of the $Z$-function along the critical line