Properties

Label 8-5760e4-1.1-c1e4-0-16
Degree $8$
Conductor $11007531.418\times 10^{8}$
Sign $1$
Analytic cond. $4.47505\times 10^{6}$
Root an. cond. $6.78187$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 24·17-s − 2·25-s + 32·41-s + 8·49-s − 24·73-s + 24·89-s + 40·97-s + 40·113-s − 20·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 44·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  − 5.82·17-s − 2/5·25-s + 4.99·41-s + 8/7·49-s − 2.80·73-s + 2.54·89-s + 4.06·97-s + 3.76·113-s − 1.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 3.38·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{8} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{8} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{28} \cdot 3^{8} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(4.47505\times 10^{6}\)
Root analytic conductor: \(6.78187\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{28} \cdot 3^{8} \cdot 5^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.164692366\)
\(L(\frac12)\) \(\approx\) \(2.164692366\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_2$ \( ( 1 + T^{2} )^{2} \)
good7$C_2^2$ \( ( 1 - 4 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
19$C_2^2$ \( ( 1 - 30 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 4 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )^{2}( 1 + 10 T + p T^{2} )^{2} \)
31$C_2^2$ \( ( 1 + 54 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 - 12 T + p T^{2} )^{2}( 1 + 12 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 8 T + p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 84 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 92 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 102 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 110 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 74 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 116 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 134 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
79$C_2^2$ \( ( 1 - 130 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 4 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.84694453977664795763714933248, −5.63715642687426188240211739647, −5.14465781847026199350209162475, −5.10992159159951469667188324035, −4.98318875561479592609496373966, −4.55877529660135868285585883638, −4.46176179718632249754436629867, −4.30729269598832855186505704992, −4.26710657276399351600561317578, −4.26158011759819995701475263881, −3.82647167758009548740217404851, −3.57891914098657557506911066651, −3.48445117736586501386896920363, −2.97941781867715517589090715590, −2.72493501628405493348547018346, −2.60456147691999933657454391239, −2.59409602731575447451225997185, −2.07663801992378300628937024696, −2.01661510915167464364584737480, −1.97600694214068064526719891345, −1.71113141720879485598061725570, −1.09372770515835110352837911073, −0.67146474165776443736312180241, −0.64256300515633003716405082391, −0.24460699787523916887487702126, 0.24460699787523916887487702126, 0.64256300515633003716405082391, 0.67146474165776443736312180241, 1.09372770515835110352837911073, 1.71113141720879485598061725570, 1.97600694214068064526719891345, 2.01661510915167464364584737480, 2.07663801992378300628937024696, 2.59409602731575447451225997185, 2.60456147691999933657454391239, 2.72493501628405493348547018346, 2.97941781867715517589090715590, 3.48445117736586501386896920363, 3.57891914098657557506911066651, 3.82647167758009548740217404851, 4.26158011759819995701475263881, 4.26710657276399351600561317578, 4.30729269598832855186505704992, 4.46176179718632249754436629867, 4.55877529660135868285585883638, 4.98318875561479592609496373966, 5.10992159159951469667188324035, 5.14465781847026199350209162475, 5.63715642687426188240211739647, 5.84694453977664795763714933248

Graph of the $Z$-function along the critical line