L(s) = 1 | + (−15.2 − 15.2i)5-s − 24.4·7-s + (−20.1 + 20.1i)11-s + (−26.7 − 26.7i)13-s − 85.9i·17-s + (−53.2 + 53.2i)19-s − 119. i·23-s + 337. i·25-s + (−78.5 + 78.5i)29-s − 200. i·31-s + (372. + 372. i)35-s + (−76.9 + 76.9i)37-s + 279.·41-s + (−15.7 − 15.7i)43-s + 470.·47-s + ⋯ |
L(s) = 1 | + (−1.36 − 1.36i)5-s − 1.32·7-s + (−0.553 + 0.553i)11-s + (−0.571 − 0.571i)13-s − 1.22i·17-s + (−0.643 + 0.643i)19-s − 1.08i·23-s + 2.69i·25-s + (−0.502 + 0.502i)29-s − 1.16i·31-s + (1.79 + 1.79i)35-s + (−0.342 + 0.342i)37-s + 1.06·41-s + (−0.0559 − 0.0559i)43-s + 1.46·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.670 - 0.741i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.670 - 0.741i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.2418618188\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2418618188\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (15.2 + 15.2i)T + 125iT^{2} \) |
| 7 | \( 1 + 24.4T + 343T^{2} \) |
| 11 | \( 1 + (20.1 - 20.1i)T - 1.33e3iT^{2} \) |
| 13 | \( 1 + (26.7 + 26.7i)T + 2.19e3iT^{2} \) |
| 17 | \( 1 + 85.9iT - 4.91e3T^{2} \) |
| 19 | \( 1 + (53.2 - 53.2i)T - 6.85e3iT^{2} \) |
| 23 | \( 1 + 119. iT - 1.21e4T^{2} \) |
| 29 | \( 1 + (78.5 - 78.5i)T - 2.43e4iT^{2} \) |
| 31 | \( 1 + 200. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (76.9 - 76.9i)T - 5.06e4iT^{2} \) |
| 41 | \( 1 - 279.T + 6.89e4T^{2} \) |
| 43 | \( 1 + (15.7 + 15.7i)T + 7.95e4iT^{2} \) |
| 47 | \( 1 - 470.T + 1.03e5T^{2} \) |
| 53 | \( 1 + (-112. - 112. i)T + 1.48e5iT^{2} \) |
| 59 | \( 1 + (-241. + 241. i)T - 2.05e5iT^{2} \) |
| 61 | \( 1 + (-6.00 - 6.00i)T + 2.26e5iT^{2} \) |
| 67 | \( 1 + (273. - 273. i)T - 3.00e5iT^{2} \) |
| 71 | \( 1 - 448. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 54.7iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 29.1iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (893. + 893. i)T + 5.71e5iT^{2} \) |
| 89 | \( 1 - 281.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 188.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.31364929351014630979392664267, −9.468375357434269394251143190483, −8.697407105651178284264168481128, −7.74228008171047028780409467477, −7.10098077913720571590758755107, −5.69917603211119208777778798377, −4.70814299387664174820998206055, −3.88333761830953838850625399985, −2.65834124152886950441926066782, −0.62509571375518097049373961525,
0.12472623056435361808966731929, 2.54367314223682903580996740008, 3.43083846289040205503136208903, 4.15469453671033324359973177395, 5.85648145599150862895778434560, 6.76021570418376484773962787537, 7.35068534820913735803737774068, 8.305662498824133289916459591580, 9.389127789979834030081057792287, 10.47980436520962295300716113330