Properties

Label 8-24e8-1.1-c3e4-0-7
Degree $8$
Conductor $110075314176$
Sign $1$
Analytic cond. $1.33399\times 10^{6}$
Root an. cond. $5.82967$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 360·17-s + 284·25-s + 216·41-s − 1.34e3·49-s + 4.42e3·73-s − 3.67e3·89-s + 760·97-s + 8.85e3·113-s + 5.32e3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2.64e3·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  + 5.13·17-s + 2.27·25-s + 0.822·41-s − 3.93·49-s + 7.09·73-s − 4.37·89-s + 0.795·97-s + 7.37·113-s + 4·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + 1.20·169-s + 0.000439·173-s + 0.000417·179-s + 0.000410·181-s + 0.000378·191-s + 0.000372·193-s + 0.000361·197-s + 0.000356·199-s + 0.000326·211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(1.33399\times 10^{6}\)
Root analytic conductor: \(5.82967\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 3^{8} ,\ ( \ : 3/2, 3/2, 3/2, 3/2 ),\ 1 )\)

Particular Values

\(L(2)\) \(\approx\) \(10.07967037\)
\(L(\frac12)\) \(\approx\) \(10.07967037\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( ( 1 - 142 T^{2} + p^{6} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 + 674 T^{2} + p^{6} T^{4} )^{2} \)
11$C_2$ \( ( 1 - p^{3} T^{2} )^{4} \)
13$C_2^2$ \( ( 1 - 1322 T^{2} + p^{6} T^{4} )^{2} \)
17$C_2$ \( ( 1 - 90 T + p^{3} T^{2} )^{4} \)
19$C_2^2$ \( ( 1 - 262 T^{2} + p^{6} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + 13534 T^{2} + p^{6} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 18722 T^{2} + p^{6} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 31246 T^{2} + p^{6} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - 100106 T^{2} + p^{6} T^{4} )^{2} \)
41$C_2$ \( ( 1 - 54 T + p^{3} T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 158614 T^{2} + p^{6} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 51694 T^{2} + p^{6} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 59182 T^{2} + p^{6} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 305782 T^{2} + p^{6} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - 123290 T^{2} + p^{6} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 588070 T^{2} + p^{6} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 497666 T^{2} + p^{6} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 1106 T + p^{3} T^{2} )^{4} \)
79$C_2^2$ \( ( 1 + 963890 T^{2} + p^{6} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 183530 T^{2} + p^{6} T^{4} )^{2} \)
89$C_2$ \( ( 1 + 918 T + p^{3} T^{2} )^{4} \)
97$C_2$ \( ( 1 - 190 T + p^{3} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.38065961444394514039507099289, −7.12042485671404348946149375329, −6.81413368224547355817572429102, −6.55090821679825224629709907910, −6.45509157921449141693658915182, −5.95997791176097202630506000045, −5.80286742499403989703370860618, −5.65647732287199770790469440265, −5.26304131498748058550176080354, −5.21441709402519607279620709709, −4.81558821065441690727371782061, −4.60653679284354441168629692777, −4.53003537850584610330309770400, −3.73966307152885802703518787955, −3.54770112797699938034778810813, −3.37784826713696623167923017599, −3.28854477800799987510054958763, −2.99269839248672319317280663115, −2.62693423749089587531718313518, −2.07432196772251983217338255004, −1.79587838159385328714875736922, −1.32586054326697453404228349761, −0.903649556444670541909337484573, −0.888161018309458046769633287055, −0.48208755968438760267178356362, 0.48208755968438760267178356362, 0.888161018309458046769633287055, 0.903649556444670541909337484573, 1.32586054326697453404228349761, 1.79587838159385328714875736922, 2.07432196772251983217338255004, 2.62693423749089587531718313518, 2.99269839248672319317280663115, 3.28854477800799987510054958763, 3.37784826713696623167923017599, 3.54770112797699938034778810813, 3.73966307152885802703518787955, 4.53003537850584610330309770400, 4.60653679284354441168629692777, 4.81558821065441690727371782061, 5.21441709402519607279620709709, 5.26304131498748058550176080354, 5.65647732287199770790469440265, 5.80286742499403989703370860618, 5.95997791176097202630506000045, 6.45509157921449141693658915182, 6.55090821679825224629709907910, 6.81413368224547355817572429102, 7.12042485671404348946149375329, 7.38065961444394514039507099289

Graph of the $Z$-function along the critical line