Properties

Degree $2$
Conductor $576$
Sign $0.928 - 0.370i$
Motivic weight $2$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (4.78 + 4.78i)5-s + 10.3·7-s + (−0.526 + 0.526i)11-s + (17.2 − 17.2i)13-s − 4.71·17-s + (2.53 + 2.53i)19-s − 12.5·23-s + 20.8i·25-s + (2.19 − 2.19i)29-s + 28.0i·31-s + (49.4 + 49.4i)35-s + (−32.1 − 32.1i)37-s − 23.1i·41-s + (−4.79 + 4.79i)43-s + 39.0i·47-s + ⋯
L(s)  = 1  + (0.957 + 0.957i)5-s + 1.47·7-s + (−0.0478 + 0.0478i)11-s + (1.32 − 1.32i)13-s − 0.277·17-s + (0.133 + 0.133i)19-s − 0.547·23-s + 0.834i·25-s + (0.0757 − 0.0757i)29-s + 0.904i·31-s + (1.41 + 1.41i)35-s + (−0.867 − 0.867i)37-s − 0.563i·41-s + (−0.111 + 0.111i)43-s + 0.829i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.928 - 0.370i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.928 - 0.370i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(576\)    =    \(2^{6} \cdot 3^{2}\)
Sign: $0.928 - 0.370i$
Motivic weight: \(2\)
Character: $\chi_{576} (271, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 576,\ (\ :1),\ 0.928 - 0.370i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.617981468\)
\(L(\frac12)\) \(\approx\) \(2.617981468\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + (-4.78 - 4.78i)T + 25iT^{2} \)
7 \( 1 - 10.3T + 49T^{2} \)
11 \( 1 + (0.526 - 0.526i)T - 121iT^{2} \)
13 \( 1 + (-17.2 + 17.2i)T - 169iT^{2} \)
17 \( 1 + 4.71T + 289T^{2} \)
19 \( 1 + (-2.53 - 2.53i)T + 361iT^{2} \)
23 \( 1 + 12.5T + 529T^{2} \)
29 \( 1 + (-2.19 + 2.19i)T - 841iT^{2} \)
31 \( 1 - 28.0iT - 961T^{2} \)
37 \( 1 + (32.1 + 32.1i)T + 1.36e3iT^{2} \)
41 \( 1 + 23.1iT - 1.68e3T^{2} \)
43 \( 1 + (4.79 - 4.79i)T - 1.84e3iT^{2} \)
47 \( 1 - 39.0iT - 2.20e3T^{2} \)
53 \( 1 + (-27.9 - 27.9i)T + 2.80e3iT^{2} \)
59 \( 1 + (-79.8 + 79.8i)T - 3.48e3iT^{2} \)
61 \( 1 + (36.7 - 36.7i)T - 3.72e3iT^{2} \)
67 \( 1 + (-10.9 - 10.9i)T + 4.48e3iT^{2} \)
71 \( 1 - 52.6T + 5.04e3T^{2} \)
73 \( 1 - 67.8iT - 5.32e3T^{2} \)
79 \( 1 - 56.4iT - 6.24e3T^{2} \)
83 \( 1 + (58.3 + 58.3i)T + 6.88e3iT^{2} \)
89 \( 1 - 131. iT - 7.92e3T^{2} \)
97 \( 1 - 60.9T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.79359040166708131475967329782, −9.910280260964663240158141454453, −8.658131415018047749301266179162, −8.007135870336411542099022221711, −6.94136699888929274279598913967, −5.88989503817028420021173133455, −5.22964898324427437978956791634, −3.78949281842961348260896953938, −2.51830430906389573488964922661, −1.37320360713456775809440653851, 1.30457352878920525870304676621, 2.01887713085585948940536406198, 4.02643150719974752030534771427, 4.89558083224600365712628129980, 5.73661709506523260406554319957, 6.74571688473034231948015824323, 8.107455605698962893696211893185, 8.698514642040102873757066409618, 9.411774547013633316518024755018, 10.49320234055020300985771929574

Graph of the $Z$-function along the critical line