Properties

Label 8-24e8-1.1-c1e4-0-2
Degree $8$
Conductor $110075314176$
Sign $1$
Analytic cond. $447.505$
Root an. cond. $2.14461$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 3·7-s + 3·9-s + 2·11-s + 5·13-s + 15-s − 10·17-s − 14·19-s + 3·21-s − 5·23-s + 2·25-s − 8·27-s − 3·29-s − 7·31-s − 2·33-s + 3·35-s − 12·37-s − 5·39-s + 12·41-s + 8·43-s − 3·45-s − 3·47-s + 8·49-s + 10·51-s + 20·53-s − 2·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 1.13·7-s + 9-s + 0.603·11-s + 1.38·13-s + 0.258·15-s − 2.42·17-s − 3.21·19-s + 0.654·21-s − 1.04·23-s + 2/5·25-s − 1.53·27-s − 0.557·29-s − 1.25·31-s − 0.348·33-s + 0.507·35-s − 1.97·37-s − 0.800·39-s + 1.87·41-s + 1.21·43-s − 0.447·45-s − 0.437·47-s + 8/7·49-s + 1.40·51-s + 2.74·53-s − 0.269·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(447.505\)
Root analytic conductor: \(2.14461\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 3^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.7977493164\)
\(L(\frac12)\) \(\approx\) \(0.7977493164\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 + T - 2 T^{2} + p T^{3} + p^{2} T^{4} \)
good5$D_4\times C_2$ \( 1 + T - T^{2} - 8 T^{3} - 26 T^{4} - 8 p T^{5} - p^{2} T^{6} + p^{3} T^{7} + p^{4} T^{8} \)
7$D_4\times C_2$ \( 1 + 3 T + T^{2} - 18 T^{3} - 48 T^{4} - 18 p T^{5} + p^{2} T^{6} + 3 p^{3} T^{7} + p^{4} T^{8} \)
11$C_2^2$ \( ( 1 - T - 10 T^{2} - p T^{3} + p^{2} T^{4} )^{2} \)
13$D_4\times C_2$ \( 1 - 5 T + T^{2} + 10 T^{3} + 82 T^{4} + 10 p T^{5} + p^{2} T^{6} - 5 p^{3} T^{7} + p^{4} T^{8} \)
17$D_{4}$ \( ( 1 + 5 T + 32 T^{2} + 5 p T^{3} + p^{2} T^{4} )^{2} \)
19$D_{4}$ \( ( 1 + 7 T + 42 T^{2} + 7 p T^{3} + p^{2} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 + 5 T - 19 T^{2} - 10 T^{3} + 832 T^{4} - 10 p T^{5} - 19 p^{2} T^{6} + 5 p^{3} T^{7} + p^{4} T^{8} \)
29$D_4\times C_2$ \( 1 + 3 T - 43 T^{2} - 18 T^{3} + 1602 T^{4} - 18 p T^{5} - 43 p^{2} T^{6} + 3 p^{3} T^{7} + p^{4} T^{8} \)
31$D_4\times C_2$ \( 1 + 7 T - 17 T^{2} + 28 T^{3} + 1876 T^{4} + 28 p T^{5} - 17 p^{2} T^{6} + 7 p^{3} T^{7} + p^{4} T^{8} \)
37$D_{4}$ \( ( 1 + 6 T + 50 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
41$D_4\times C_2$ \( 1 - 12 T + 59 T^{2} - 36 T^{3} - 360 T^{4} - 36 p T^{5} + 59 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
43$D_4\times C_2$ \( 1 - 8 T - 5 T^{2} + 136 T^{3} + 160 T^{4} + 136 p T^{5} - 5 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 + 3 T - 79 T^{2} - 18 T^{3} + 5112 T^{4} - 18 p T^{5} - 79 p^{2} T^{6} + 3 p^{3} T^{7} + p^{4} T^{8} \)
53$D_{4}$ \( ( 1 - 10 T + 98 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 7 T - 10 T^{2} - 7 p T^{3} + p^{2} T^{4} )^{2} \)
61$D_4\times C_2$ \( 1 + T - 113 T^{2} - 8 T^{3} + 9214 T^{4} - 8 p T^{5} - 113 p^{2} T^{6} + p^{3} T^{7} + p^{4} T^{8} \)
67$D_4\times C_2$ \( 1 - 4 T - 89 T^{2} + 116 T^{3} + 5464 T^{4} + 116 p T^{5} - 89 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
71$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
73$D_{4}$ \( ( 1 + 7 T + 84 T^{2} + 7 p T^{3} + p^{2} T^{4} )^{2} \)
79$D_4\times C_2$ \( 1 - 7 T - 113 T^{2} - 28 T^{3} + 16132 T^{4} - 28 p T^{5} - 113 p^{2} T^{6} - 7 p^{3} T^{7} + p^{4} T^{8} \)
83$D_4\times C_2$ \( 1 - 25 T + 311 T^{2} - 3700 T^{3} + 39832 T^{4} - 3700 p T^{5} + 311 p^{2} T^{6} - 25 p^{3} T^{7} + p^{4} T^{8} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
97$D_4\times C_2$ \( 1 - 8 T - 113 T^{2} + 136 T^{3} + 15712 T^{4} + 136 p T^{5} - 113 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.78779782808171112512966871612, −7.22715514309356201752284757145, −7.21759917664092901124230745254, −6.95574285787064920799539087091, −6.80434005018416036609538601604, −6.58288246111339101907755245212, −6.25026889860613399660411280256, −5.99034159174410110023806969547, −5.98737232361202366826426560155, −5.71053505882593086017896797736, −5.46898259604252434834698099105, −4.79386549558208309588944130720, −4.71593546106292449136769565214, −4.34377646760899051440474906343, −4.11006399251522869937958301214, −3.96687817422801291273168861651, −3.86147187858533228258776729899, −3.35449600559463227719451255998, −3.31885878041627822419052565825, −2.34716446829473048557328915308, −2.17532591036492324447077593656, −2.10789157058983036020927388752, −1.76210234058830833101696524024, −0.810704621221195081761531485835, −0.36498634137254296746321726871, 0.36498634137254296746321726871, 0.810704621221195081761531485835, 1.76210234058830833101696524024, 2.10789157058983036020927388752, 2.17532591036492324447077593656, 2.34716446829473048557328915308, 3.31885878041627822419052565825, 3.35449600559463227719451255998, 3.86147187858533228258776729899, 3.96687817422801291273168861651, 4.11006399251522869937958301214, 4.34377646760899051440474906343, 4.71593546106292449136769565214, 4.79386549558208309588944130720, 5.46898259604252434834698099105, 5.71053505882593086017896797736, 5.98737232361202366826426560155, 5.99034159174410110023806969547, 6.25026889860613399660411280256, 6.58288246111339101907755245212, 6.80434005018416036609538601604, 6.95574285787064920799539087091, 7.21759917664092901124230745254, 7.22715514309356201752284757145, 7.78779782808171112512966871612

Graph of the $Z$-function along the critical line