Properties

Label 12-572e6-1.1-c1e6-0-0
Degree $12$
Conductor $3.502\times 10^{16}$
Sign $1$
Analytic cond. $9079.01$
Root an. cond. $2.13715$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 6·5-s − 5·7-s + 5·9-s + 3·11-s + 15·13-s − 6·15-s + 5·17-s − 4·19-s + 5·21-s + 23-s + 9·25-s − 4·27-s − 4·29-s + 14·31-s − 3·33-s − 30·35-s + 8·37-s − 15·39-s + 5·41-s − 8·43-s + 30·45-s + 12·47-s + 17·49-s − 5·51-s + 22·53-s + 18·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 2.68·5-s − 1.88·7-s + 5/3·9-s + 0.904·11-s + 4.16·13-s − 1.54·15-s + 1.21·17-s − 0.917·19-s + 1.09·21-s + 0.208·23-s + 9/5·25-s − 0.769·27-s − 0.742·29-s + 2.51·31-s − 0.522·33-s − 5.07·35-s + 1.31·37-s − 2.40·39-s + 0.780·41-s − 1.21·43-s + 4.47·45-s + 1.75·47-s + 17/7·49-s − 0.700·51-s + 3.02·53-s + 2.42·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 11^{6} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 11^{6} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(2^{12} \cdot 11^{6} \cdot 13^{6}\)
Sign: $1$
Analytic conductor: \(9079.01\)
Root analytic conductor: \(2.13715\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 2^{12} \cdot 11^{6} \cdot 13^{6} ,\ ( \ : [1/2]^{6} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(7.420447520\)
\(L(\frac12)\) \(\approx\) \(7.420447520\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( ( 1 - T + T^{2} )^{3} \)
13 \( ( 1 - 5 T + p T^{2} )^{3} \)
good3 \( 1 + T - 4 T^{2} - 5 T^{3} + 5 T^{4} + 4 T^{5} - 5 T^{6} + 4 p T^{7} + 5 p^{2} T^{8} - 5 p^{3} T^{9} - 4 p^{4} T^{10} + p^{5} T^{11} + p^{6} T^{12} \)
5 \( ( 1 - 3 T + 9 T^{2} - 21 T^{3} + 9 p T^{4} - 3 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
7 \( 1 + 5 T + 8 T^{2} + 3 T^{3} - 5 p T^{4} - 248 T^{5} - 881 T^{6} - 248 p T^{7} - 5 p^{3} T^{8} + 3 p^{3} T^{9} + 8 p^{4} T^{10} + 5 p^{5} T^{11} + p^{6} T^{12} \)
17 \( 1 - 5 T - 8 T^{2} + 13 T^{3} + 83 T^{4} + 1228 T^{5} - 7991 T^{6} + 1228 p T^{7} + 83 p^{2} T^{8} + 13 p^{3} T^{9} - 8 p^{4} T^{10} - 5 p^{5} T^{11} + p^{6} T^{12} \)
19 \( 1 + 4 T - 42 T^{2} - 66 T^{3} + 1666 T^{4} + 1270 T^{5} - 33773 T^{6} + 1270 p T^{7} + 1666 p^{2} T^{8} - 66 p^{3} T^{9} - 42 p^{4} T^{10} + 4 p^{5} T^{11} + p^{6} T^{12} \)
23 \( 1 - T - 14 T^{2} + 263 T^{3} - 259 T^{4} - 1924 T^{5} + 37951 T^{6} - 1924 p T^{7} - 259 p^{2} T^{8} + 263 p^{3} T^{9} - 14 p^{4} T^{10} - p^{5} T^{11} + p^{6} T^{12} \)
29 \( 1 + 4 T - 26 T^{2} + 2 p T^{3} + 326 T^{4} - 4070 T^{5} - 12809 T^{6} - 4070 p T^{7} + 326 p^{2} T^{8} + 2 p^{4} T^{9} - 26 p^{4} T^{10} + 4 p^{5} T^{11} + p^{6} T^{12} \)
31 \( ( 1 - 7 T + 40 T^{2} - 311 T^{3} + 40 p T^{4} - 7 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
37 \( 1 - 8 T - 12 T^{2} + 630 T^{3} - 1988 T^{4} - 13004 T^{5} + 183139 T^{6} - 13004 p T^{7} - 1988 p^{2} T^{8} + 630 p^{3} T^{9} - 12 p^{4} T^{10} - 8 p^{5} T^{11} + p^{6} T^{12} \)
41 \( 1 - 5 T - 80 T^{2} + 133 T^{3} + 5075 T^{4} + 100 T^{5} - 247967 T^{6} + 100 p T^{7} + 5075 p^{2} T^{8} + 133 p^{3} T^{9} - 80 p^{4} T^{10} - 5 p^{5} T^{11} + p^{6} T^{12} \)
43 \( 1 + 8 T + 68 T^{2} + 846 T^{3} + 3700 T^{4} + 19300 T^{5} + 232711 T^{6} + 19300 p T^{7} + 3700 p^{2} T^{8} + 846 p^{3} T^{9} + 68 p^{4} T^{10} + 8 p^{5} T^{11} + p^{6} T^{12} \)
47 \( ( 1 - 6 T + 126 T^{2} - 465 T^{3} + 126 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
53 \( ( 1 - 11 T + 3 p T^{2} - 1163 T^{3} + 3 p^{2} T^{4} - 11 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
59 \( 1 + 22 T + 196 T^{2} + 1318 T^{3} + 10754 T^{4} + 51526 T^{5} + 127339 T^{6} + 51526 p T^{7} + 10754 p^{2} T^{8} + 1318 p^{3} T^{9} + 196 p^{4} T^{10} + 22 p^{5} T^{11} + p^{6} T^{12} \)
61 \( 1 + 6 T - 90 T^{2} - 826 T^{3} + 3444 T^{4} + 29760 T^{5} - 22749 T^{6} + 29760 p T^{7} + 3444 p^{2} T^{8} - 826 p^{3} T^{9} - 90 p^{4} T^{10} + 6 p^{5} T^{11} + p^{6} T^{12} \)
67 \( 1 + 7 T - 84 T^{2} - 819 T^{3} + 2653 T^{4} + 23044 T^{5} - 37973 T^{6} + 23044 p T^{7} + 2653 p^{2} T^{8} - 819 p^{3} T^{9} - 84 p^{4} T^{10} + 7 p^{5} T^{11} + p^{6} T^{12} \)
71 \( 1 - 11 T - 26 T^{2} + 349 T^{3} + 359 T^{4} + 29662 T^{5} - 462089 T^{6} + 29662 p T^{7} + 359 p^{2} T^{8} + 349 p^{3} T^{9} - 26 p^{4} T^{10} - 11 p^{5} T^{11} + p^{6} T^{12} \)
73 \( ( 1 - 2 T + 119 T^{2} + 100 T^{3} + 119 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
79 \( ( 1 + 20 T + 145 T^{2} + 688 T^{3} + 145 p T^{4} + 20 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
83 \( ( 1 - 2 T + 210 T^{2} - 401 T^{3} + 210 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
89 \( 1 + 27 T + 300 T^{2} + 2025 T^{3} + 16827 T^{4} + 202284 T^{5} + 2094721 T^{6} + 202284 p T^{7} + 16827 p^{2} T^{8} + 2025 p^{3} T^{9} + 300 p^{4} T^{10} + 27 p^{5} T^{11} + p^{6} T^{12} \)
97 \( 1 + 7 T - 189 T^{2} - 804 T^{3} + 24913 T^{4} + 36589 T^{5} - 2604938 T^{6} + 36589 p T^{7} + 24913 p^{2} T^{8} - 804 p^{3} T^{9} - 189 p^{4} T^{10} + 7 p^{5} T^{11} + p^{6} T^{12} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.01207414443416946951908129223, −5.68588568596341240854600143896, −5.60886230080885425077968322097, −5.39642297922255685461507255985, −5.21138192646605211975012087003, −4.96472659384464100421725485934, −4.85634244555337405643000134398, −4.16591911226042070490529088578, −4.16119764073536957347489721034, −4.16030063555240686901945192132, −3.98739227565317839536299742195, −3.97739492828267563469898087458, −3.78344245502699430468359565177, −3.34601554392530329748395855602, −3.16776128107826727126893445832, −2.79369619696306451321851505813, −2.65022169667188793686340609877, −2.62995502362101678239244085635, −2.44384408799601666545438837678, −1.72041292009131241352783617731, −1.51671407712518381077924802123, −1.48273980454248708120301866805, −1.23175758434516573003712055196, −1.20806776865288831794180790294, −0.53697340599067567078445436559, 0.53697340599067567078445436559, 1.20806776865288831794180790294, 1.23175758434516573003712055196, 1.48273980454248708120301866805, 1.51671407712518381077924802123, 1.72041292009131241352783617731, 2.44384408799601666545438837678, 2.62995502362101678239244085635, 2.65022169667188793686340609877, 2.79369619696306451321851505813, 3.16776128107826727126893445832, 3.34601554392530329748395855602, 3.78344245502699430468359565177, 3.97739492828267563469898087458, 3.98739227565317839536299742195, 4.16030063555240686901945192132, 4.16119764073536957347489721034, 4.16591911226042070490529088578, 4.85634244555337405643000134398, 4.96472659384464100421725485934, 5.21138192646605211975012087003, 5.39642297922255685461507255985, 5.60886230080885425077968322097, 5.68588568596341240854600143896, 6.01207414443416946951908129223

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.