Properties

Label 2-570-19.17-c1-0-1
Degree $2$
Conductor $570$
Sign $0.336 - 0.941i$
Analytic cond. $4.55147$
Root an. cond. $2.13341$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.173 − 0.984i)2-s + (−0.766 − 0.642i)3-s + (−0.939 − 0.342i)4-s + (−0.939 + 0.342i)5-s + (−0.766 + 0.642i)6-s + (−0.284 − 0.493i)7-s + (−0.5 + 0.866i)8-s + (0.173 + 0.984i)9-s + (0.173 + 0.984i)10-s + (−0.953 + 1.65i)11-s + (0.499 + 0.866i)12-s + (−3.59 + 3.02i)13-s + (−0.535 + 0.194i)14-s + (0.939 + 0.342i)15-s + (0.766 + 0.642i)16-s + (−0.808 + 4.58i)17-s + ⋯
L(s)  = 1  + (0.122 − 0.696i)2-s + (−0.442 − 0.371i)3-s + (−0.469 − 0.171i)4-s + (−0.420 + 0.152i)5-s + (−0.312 + 0.262i)6-s + (−0.107 − 0.186i)7-s + (−0.176 + 0.306i)8-s + (0.0578 + 0.328i)9-s + (0.0549 + 0.311i)10-s + (−0.287 + 0.497i)11-s + (0.144 + 0.249i)12-s + (−0.998 + 0.837i)13-s + (−0.143 + 0.0520i)14-s + (0.242 + 0.0883i)15-s + (0.191 + 0.160i)16-s + (−0.196 + 1.11i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.336 - 0.941i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.336 - 0.941i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(570\)    =    \(2 \cdot 3 \cdot 5 \cdot 19\)
Sign: $0.336 - 0.941i$
Analytic conductor: \(4.55147\)
Root analytic conductor: \(2.13341\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{570} (511, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 570,\ (\ :1/2),\ 0.336 - 0.941i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.383379 + 0.270151i\)
\(L(\frac12)\) \(\approx\) \(0.383379 + 0.270151i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.173 + 0.984i)T \)
3 \( 1 + (0.766 + 0.642i)T \)
5 \( 1 + (0.939 - 0.342i)T \)
19 \( 1 + (1.57 + 4.06i)T \)
good7 \( 1 + (0.284 + 0.493i)T + (-3.5 + 6.06i)T^{2} \)
11 \( 1 + (0.953 - 1.65i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + (3.59 - 3.02i)T + (2.25 - 12.8i)T^{2} \)
17 \( 1 + (0.808 - 4.58i)T + (-15.9 - 5.81i)T^{2} \)
23 \( 1 + (-1.76 - 0.643i)T + (17.6 + 14.7i)T^{2} \)
29 \( 1 + (-0.782 - 4.43i)T + (-27.2 + 9.91i)T^{2} \)
31 \( 1 + (-3.44 - 5.96i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + 6.61T + 37T^{2} \)
41 \( 1 + (-2.55 - 2.14i)T + (7.11 + 40.3i)T^{2} \)
43 \( 1 + (6.29 - 2.29i)T + (32.9 - 27.6i)T^{2} \)
47 \( 1 + (-1.88 - 10.7i)T + (-44.1 + 16.0i)T^{2} \)
53 \( 1 + (7.96 + 2.89i)T + (40.6 + 34.0i)T^{2} \)
59 \( 1 + (-0.205 + 1.16i)T + (-55.4 - 20.1i)T^{2} \)
61 \( 1 + (0.352 + 0.128i)T + (46.7 + 39.2i)T^{2} \)
67 \( 1 + (-0.00191 - 0.0108i)T + (-62.9 + 22.9i)T^{2} \)
71 \( 1 + (-4.16 + 1.51i)T + (54.3 - 45.6i)T^{2} \)
73 \( 1 + (10.4 + 8.79i)T + (12.6 + 71.8i)T^{2} \)
79 \( 1 + (11.8 + 9.91i)T + (13.7 + 77.7i)T^{2} \)
83 \( 1 + (-3.95 - 6.84i)T + (-41.5 + 71.8i)T^{2} \)
89 \( 1 + (12.0 - 10.1i)T + (15.4 - 87.6i)T^{2} \)
97 \( 1 + (0.389 - 2.21i)T + (-91.1 - 33.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.92590536815988942117936320019, −10.31458106645244951786535165187, −9.294362705020545707737110875259, −8.323661732142777805534234566881, −7.19209251900082848960625368988, −6.51989374006952937048843503512, −5.06358300512279964802299636123, −4.36466191371851244366545383326, −2.97805685266290669387694151571, −1.67938068103055734163380366544, 0.26668203519277123869970681517, 2.84262928721175178287391863774, 4.12745219297976996260148139930, 5.12693232185230938431522708586, 5.82610533278342728660266729987, 6.97391390163416984017431090446, 7.83578960646714309082080953021, 8.672283297394173283222380871670, 9.721788403291008986111359530030, 10.41686448797449476108418760171

Graph of the $Z$-function along the critical line