Properties

Label 2-570-19.17-c1-0-11
Degree $2$
Conductor $570$
Sign $-0.197 + 0.980i$
Analytic cond. $4.55147$
Root an. cond. $2.13341$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.173 − 0.984i)2-s + (0.766 + 0.642i)3-s + (−0.939 − 0.342i)4-s + (−0.939 + 0.342i)5-s + (0.766 − 0.642i)6-s + (−1.21 − 2.10i)7-s + (−0.5 + 0.866i)8-s + (0.173 + 0.984i)9-s + (0.173 + 0.984i)10-s + (0.983 − 1.70i)11-s + (−0.499 − 0.866i)12-s + (3.82 − 3.20i)13-s + (−2.28 + 0.832i)14-s + (−0.939 − 0.342i)15-s + (0.766 + 0.642i)16-s + (0.779 − 4.42i)17-s + ⋯
L(s)  = 1  + (0.122 − 0.696i)2-s + (0.442 + 0.371i)3-s + (−0.469 − 0.171i)4-s + (−0.420 + 0.152i)5-s + (0.312 − 0.262i)6-s + (−0.460 − 0.797i)7-s + (−0.176 + 0.306i)8-s + (0.0578 + 0.328i)9-s + (0.0549 + 0.311i)10-s + (0.296 − 0.513i)11-s + (−0.144 − 0.249i)12-s + (1.05 − 0.889i)13-s + (−0.611 + 0.222i)14-s + (−0.242 − 0.0883i)15-s + (0.191 + 0.160i)16-s + (0.189 − 1.07i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.197 + 0.980i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.197 + 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(570\)    =    \(2 \cdot 3 \cdot 5 \cdot 19\)
Sign: $-0.197 + 0.980i$
Analytic conductor: \(4.55147\)
Root analytic conductor: \(2.13341\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{570} (511, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 570,\ (\ :1/2),\ -0.197 + 0.980i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.909171 - 1.11061i\)
\(L(\frac12)\) \(\approx\) \(0.909171 - 1.11061i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.173 + 0.984i)T \)
3 \( 1 + (-0.766 - 0.642i)T \)
5 \( 1 + (0.939 - 0.342i)T \)
19 \( 1 + (2.14 + 3.79i)T \)
good7 \( 1 + (1.21 + 2.10i)T + (-3.5 + 6.06i)T^{2} \)
11 \( 1 + (-0.983 + 1.70i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + (-3.82 + 3.20i)T + (2.25 - 12.8i)T^{2} \)
17 \( 1 + (-0.779 + 4.42i)T + (-15.9 - 5.81i)T^{2} \)
23 \( 1 + (-1.62 - 0.590i)T + (17.6 + 14.7i)T^{2} \)
29 \( 1 + (-0.0965 - 0.547i)T + (-27.2 + 9.91i)T^{2} \)
31 \( 1 + (2.42 + 4.20i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + 1.63T + 37T^{2} \)
41 \( 1 + (-2.99 - 2.51i)T + (7.11 + 40.3i)T^{2} \)
43 \( 1 + (-2.11 + 0.770i)T + (32.9 - 27.6i)T^{2} \)
47 \( 1 + (-1.19 - 6.77i)T + (-44.1 + 16.0i)T^{2} \)
53 \( 1 + (-1.31 - 0.479i)T + (40.6 + 34.0i)T^{2} \)
59 \( 1 + (1.61 - 9.16i)T + (-55.4 - 20.1i)T^{2} \)
61 \( 1 + (1.47 + 0.537i)T + (46.7 + 39.2i)T^{2} \)
67 \( 1 + (1.06 + 6.02i)T + (-62.9 + 22.9i)T^{2} \)
71 \( 1 + (4.04 - 1.47i)T + (54.3 - 45.6i)T^{2} \)
73 \( 1 + (-2.44 - 2.05i)T + (12.6 + 71.8i)T^{2} \)
79 \( 1 + (6.63 + 5.56i)T + (13.7 + 77.7i)T^{2} \)
83 \( 1 + (-7.19 - 12.4i)T + (-41.5 + 71.8i)T^{2} \)
89 \( 1 + (1.72 - 1.44i)T + (15.4 - 87.6i)T^{2} \)
97 \( 1 + (1.39 - 7.91i)T + (-91.1 - 33.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.78240216096299351496675049222, −9.656743151267600189080311147637, −8.933812056527897071663033631009, −7.977651423049290177005902221266, −6.98727509877180995471243476996, −5.75024441015268786632817995978, −4.47191479196420545837881690053, −3.58667549515429416171158747024, −2.81126217182433215966674550997, −0.796468147375735600229551137879, 1.77044246298152107779159413850, 3.44628120371738924394252647069, 4.29866582654802398180111582887, 5.75282793940967130979456946851, 6.46661110610796748331432395982, 7.36378518336228202779086060160, 8.518163208686985524087124521642, 8.793480186771740924743888060157, 9.850635246829338957956463711371, 11.02987974123351676437251668340

Graph of the $Z$-function along the critical line