Properties

Degree 2
Conductor $ 3 \cdot 19 $
Sign $0.400 - 0.916i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.08 − 0.759i)2-s + (−1.47 + 0.911i)3-s + (2.24 + 1.88i)4-s + (1.78 + 2.12i)5-s + (3.76 − 0.782i)6-s + (−1.70 + 2.96i)7-s + (−1.02 − 1.77i)8-s + (1.33 − 2.68i)9-s + (−2.10 − 5.77i)10-s + (−2.03 + 1.17i)11-s + (−5.01 − 0.727i)12-s + (−0.115 − 0.0203i)13-s + (5.81 − 4.87i)14-s + (−4.55 − 1.50i)15-s + (−0.224 − 1.27i)16-s + (−0.519 + 1.42i)17-s + ⋯
L(s)  = 1  + (−1.47 − 0.536i)2-s + (−0.850 + 0.526i)3-s + (1.12 + 0.940i)4-s + (0.796 + 0.948i)5-s + (1.53 − 0.319i)6-s + (−0.645 + 1.11i)7-s + (−0.363 − 0.629i)8-s + (0.446 − 0.894i)9-s + (−0.664 − 1.82i)10-s + (−0.614 + 0.354i)11-s + (−1.44 − 0.209i)12-s + (−0.0320 − 0.00565i)13-s + (1.55 − 1.30i)14-s + (−1.17 − 0.387i)15-s + (−0.0560 − 0.318i)16-s + (−0.125 + 0.346i)17-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 57 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.400 - 0.916i)\, \overline{\Lambda}(2-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 57 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.400 - 0.916i)\, \overline{\Lambda}(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(57\)    =    \(3 \cdot 19\)
\( \varepsilon \)  =  $0.400 - 0.916i$
motivic weight  =  \(1\)
character  :  $\chi_{57} (53, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 57,\ (\ :1/2),\ 0.400 - 0.916i)$
$L(1)$  $\approx$  $0.295290 + 0.193156i$
$L(\frac12)$  $\approx$  $0.295290 + 0.193156i$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{3,\;19\}$, \(F_p\) is a polynomial of degree 2. If $p \in \{3,\;19\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad3 \( 1 + (1.47 - 0.911i)T \)
19 \( 1 + (-3.41 - 2.71i)T \)
good2 \( 1 + (2.08 + 0.759i)T + (1.53 + 1.28i)T^{2} \)
5 \( 1 + (-1.78 - 2.12i)T + (-0.868 + 4.92i)T^{2} \)
7 \( 1 + (1.70 - 2.96i)T + (-3.5 - 6.06i)T^{2} \)
11 \( 1 + (2.03 - 1.17i)T + (5.5 - 9.52i)T^{2} \)
13 \( 1 + (0.115 + 0.0203i)T + (12.2 + 4.44i)T^{2} \)
17 \( 1 + (0.519 - 1.42i)T + (-13.0 - 10.9i)T^{2} \)
23 \( 1 + (-4.79 + 5.71i)T + (-3.99 - 22.6i)T^{2} \)
29 \( 1 + (-1.69 + 0.616i)T + (22.2 - 18.6i)T^{2} \)
31 \( 1 + (1.23 + 0.711i)T + (15.5 + 26.8i)T^{2} \)
37 \( 1 + 3.31iT - 37T^{2} \)
41 \( 1 + (-0.635 - 3.60i)T + (-38.5 + 14.0i)T^{2} \)
43 \( 1 + (-3.60 + 3.02i)T + (7.46 - 42.3i)T^{2} \)
47 \( 1 + (2.61 + 7.17i)T + (-36.0 + 30.2i)T^{2} \)
53 \( 1 + (-2.93 - 2.46i)T + (9.20 + 52.1i)T^{2} \)
59 \( 1 + (-10.5 - 3.83i)T + (45.1 + 37.9i)T^{2} \)
61 \( 1 + (-6.58 - 5.52i)T + (10.5 + 60.0i)T^{2} \)
67 \( 1 + (0.0605 + 0.166i)T + (-51.3 + 43.0i)T^{2} \)
71 \( 1 + (5.60 - 4.70i)T + (12.3 - 69.9i)T^{2} \)
73 \( 1 + (-0.838 - 4.75i)T + (-68.5 + 24.9i)T^{2} \)
79 \( 1 + (6.89 - 1.21i)T + (74.2 - 27.0i)T^{2} \)
83 \( 1 + (-0.836 - 0.482i)T + (41.5 + 71.8i)T^{2} \)
89 \( 1 + (-2.02 + 11.4i)T + (-83.6 - 30.4i)T^{2} \)
97 \( 1 + (-1.73 + 4.75i)T + (-74.3 - 62.3i)T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−15.83313601907118820782935471822, −14.67534275455474200264987542358, −12.71720506085187140174944205983, −11.58772898589970543800998296378, −10.43743148850837082042464008264, −9.925326906919380896902314088222, −8.832053977582042628369798112859, −6.94059525202353416351063716617, −5.63473154120899796833100064460, −2.63875223321940275010252570548, 0.978855310011888840618543987108, 5.28687770373165782012472269773, 6.72662915737706561713265096205, 7.68739716536140760275595735817, 9.206969187123804582721157164735, 10.12194330552450329041062210168, 11.20151964665696410075235401161, 12.99719477942610939711768396412, 13.55100201788267124593745674022, 15.89728006742376784723035932630

Graph of the $Z$-function along the critical line