Properties

Degree 2
Conductor $ 3 \cdot 19 $
Sign $0.583 - 0.812i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (1.49 + 1.25i)2-s + (−1.72 + 0.130i)3-s + (0.317 + 1.79i)4-s + (0.487 + 0.0858i)5-s + (−2.75 − 1.97i)6-s + (−0.969 − 1.67i)7-s + (0.170 − 0.295i)8-s + (2.96 − 0.449i)9-s + (0.621 + 0.741i)10-s + (−3.99 − 2.30i)11-s + (−0.781 − 3.06i)12-s + (−1.79 + 4.92i)13-s + (0.658 − 3.73i)14-s + (−0.852 − 0.0849i)15-s + (4.05 − 1.47i)16-s + (−1.61 + 1.92i)17-s + ⋯
L(s)  = 1  + (1.05 + 0.889i)2-s + (−0.997 + 0.0751i)3-s + (0.158 + 0.898i)4-s + (0.217 + 0.0384i)5-s + (−1.12 − 0.806i)6-s + (−0.366 − 0.634i)7-s + (0.0602 − 0.104i)8-s + (0.988 − 0.149i)9-s + (0.196 + 0.234i)10-s + (−1.20 − 0.695i)11-s + (−0.225 − 0.884i)12-s + (−0.497 + 1.36i)13-s + (0.176 − 0.998i)14-s + (−0.220 − 0.0219i)15-s + (1.01 − 0.369i)16-s + (−0.392 + 0.467i)17-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 57 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.583 - 0.812i)\, \overline{\Lambda}(2-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 57 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.583 - 0.812i)\, \overline{\Lambda}(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(57\)    =    \(3 \cdot 19\)
\( \varepsilon \)  =  $0.583 - 0.812i$
motivic weight  =  \(1\)
character  :  $\chi_{57} (41, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 57,\ (\ :1/2),\ 0.583 - 0.812i)$
$L(1)$  $\approx$  $0.950206 + 0.487687i$
$L(\frac12)$  $\approx$  $0.950206 + 0.487687i$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{3,\;19\}$, \(F_p\) is a polynomial of degree 2. If $p \in \{3,\;19\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad3 \( 1 + (1.72 - 0.130i)T \)
19 \( 1 + (-2.80 - 3.33i)T \)
good2 \( 1 + (-1.49 - 1.25i)T + (0.347 + 1.96i)T^{2} \)
5 \( 1 + (-0.487 - 0.0858i)T + (4.69 + 1.71i)T^{2} \)
7 \( 1 + (0.969 + 1.67i)T + (-3.5 + 6.06i)T^{2} \)
11 \( 1 + (3.99 + 2.30i)T + (5.5 + 9.52i)T^{2} \)
13 \( 1 + (1.79 - 4.92i)T + (-9.95 - 8.35i)T^{2} \)
17 \( 1 + (1.61 - 1.92i)T + (-2.95 - 16.7i)T^{2} \)
23 \( 1 + (-3.35 + 0.591i)T + (21.6 - 7.86i)T^{2} \)
29 \( 1 + (-0.872 + 0.731i)T + (5.03 - 28.5i)T^{2} \)
31 \( 1 + (1.31 - 0.758i)T + (15.5 - 26.8i)T^{2} \)
37 \( 1 + 3.28iT - 37T^{2} \)
41 \( 1 + (-9.40 + 3.42i)T + (31.4 - 26.3i)T^{2} \)
43 \( 1 + (0.829 - 4.70i)T + (-40.4 - 14.7i)T^{2} \)
47 \( 1 + (3.82 + 4.56i)T + (-8.16 + 46.2i)T^{2} \)
53 \( 1 + (-1.71 - 9.73i)T + (-49.8 + 18.1i)T^{2} \)
59 \( 1 + (0.172 + 0.144i)T + (10.2 + 58.1i)T^{2} \)
61 \( 1 + (1.90 + 10.7i)T + (-57.3 + 20.8i)T^{2} \)
67 \( 1 + (-0.266 - 0.317i)T + (-11.6 + 65.9i)T^{2} \)
71 \( 1 + (-0.540 + 3.06i)T + (-66.7 - 24.2i)T^{2} \)
73 \( 1 + (0.118 - 0.0430i)T + (55.9 - 46.9i)T^{2} \)
79 \( 1 + (-4.94 - 13.5i)T + (-60.5 + 50.7i)T^{2} \)
83 \( 1 + (6.05 - 3.49i)T + (41.5 - 71.8i)T^{2} \)
89 \( 1 + (5.32 + 1.93i)T + (68.1 + 57.2i)T^{2} \)
97 \( 1 + (4.49 - 5.36i)T + (-16.8 - 95.5i)T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−15.58225653132493461290092865839, −14.18866870526732604962959149347, −13.35119861966610712165320532726, −12.37169690418043484265383472659, −10.95050458250366087528218885024, −9.812291823582266727609811885541, −7.53753238418708037631996499533, −6.45276109467892519927219037987, −5.40028307746756552605898902890, −4.10118998631940605957998059636, 2.70849373730960705652318018339, 4.88085827272819601208854532071, 5.63971115786942479940481375468, 7.53531077763059156115958000768, 9.796686614240549101831128638647, 10.82029642037965464458414705621, 11.86988687432196270893073472489, 12.85204794717140138906475216332, 13.28586214026345824809607827605, 15.08306307627369839327510555668

Graph of the $Z$-function along the critical line