Properties

Label 2-57-57.2-c1-0-4
Degree $2$
Conductor $57$
Sign $-0.240 + 0.970i$
Analytic cond. $0.455147$
Root an. cond. $0.674646$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.336 − 1.90i)2-s + (−1.20 − 1.24i)3-s + (−1.64 − 0.600i)4-s + (1.09 + 3.00i)5-s + (−2.78 + 1.87i)6-s + (−1.23 − 2.13i)7-s + (0.237 − 0.412i)8-s + (−0.113 + 2.99i)9-s + (6.11 − 1.07i)10-s + (2.11 + 1.21i)11-s + (1.23 + 2.77i)12-s + (1.65 + 1.97i)13-s + (−4.48 + 1.63i)14-s + (2.43 − 4.98i)15-s + (−3.39 − 2.84i)16-s + (−3.75 − 0.662i)17-s + ⋯
L(s)  = 1  + (0.237 − 1.34i)2-s + (−0.693 − 0.720i)3-s + (−0.824 − 0.300i)4-s + (0.489 + 1.34i)5-s + (−1.13 + 0.764i)6-s + (−0.465 − 0.805i)7-s + (0.0841 − 0.145i)8-s + (−0.0379 + 0.999i)9-s + (1.93 − 0.340i)10-s + (0.636 + 0.367i)11-s + (0.355 + 0.801i)12-s + (0.458 + 0.547i)13-s + (−1.19 + 0.435i)14-s + (0.629 − 1.28i)15-s + (−0.848 − 0.712i)16-s + (−0.911 − 0.160i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 57 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.240 + 0.970i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 57 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.240 + 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(57\)    =    \(3 \cdot 19\)
Sign: $-0.240 + 0.970i$
Analytic conductor: \(0.455147\)
Root analytic conductor: \(0.674646\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{57} (2, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 57,\ (\ :1/2),\ -0.240 + 0.970i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.521827 - 0.666699i\)
\(L(\frac12)\) \(\approx\) \(0.521827 - 0.666699i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (1.20 + 1.24i)T \)
19 \( 1 + (2.59 - 3.50i)T \)
good2 \( 1 + (-0.336 + 1.90i)T + (-1.87 - 0.684i)T^{2} \)
5 \( 1 + (-1.09 - 3.00i)T + (-3.83 + 3.21i)T^{2} \)
7 \( 1 + (1.23 + 2.13i)T + (-3.5 + 6.06i)T^{2} \)
11 \( 1 + (-2.11 - 1.21i)T + (5.5 + 9.52i)T^{2} \)
13 \( 1 + (-1.65 - 1.97i)T + (-2.25 + 12.8i)T^{2} \)
17 \( 1 + (3.75 + 0.662i)T + (15.9 + 5.81i)T^{2} \)
23 \( 1 + (0.817 - 2.24i)T + (-17.6 - 14.7i)T^{2} \)
29 \( 1 + (0.705 + 3.99i)T + (-27.2 + 9.91i)T^{2} \)
31 \( 1 + (3.82 - 2.20i)T + (15.5 - 26.8i)T^{2} \)
37 \( 1 + 9.08iT - 37T^{2} \)
41 \( 1 + (-4.39 - 3.68i)T + (7.11 + 40.3i)T^{2} \)
43 \( 1 + (-3.86 + 1.40i)T + (32.9 - 27.6i)T^{2} \)
47 \( 1 + (3.04 - 0.536i)T + (44.1 - 16.0i)T^{2} \)
53 \( 1 + (3.11 + 1.13i)T + (40.6 + 34.0i)T^{2} \)
59 \( 1 + (-1.78 + 10.1i)T + (-55.4 - 20.1i)T^{2} \)
61 \( 1 + (-0.932 - 0.339i)T + (46.7 + 39.2i)T^{2} \)
67 \( 1 + (6.74 - 1.18i)T + (62.9 - 22.9i)T^{2} \)
71 \( 1 + (-0.208 + 0.0757i)T + (54.3 - 45.6i)T^{2} \)
73 \( 1 + (-12.8 - 10.8i)T + (12.6 + 71.8i)T^{2} \)
79 \( 1 + (-2.67 + 3.18i)T + (-13.7 - 77.7i)T^{2} \)
83 \( 1 + (-2.45 + 1.41i)T + (41.5 - 71.8i)T^{2} \)
89 \( 1 + (6.53 - 5.48i)T + (15.4 - 87.6i)T^{2} \)
97 \( 1 + (-3.82 - 0.673i)T + (91.1 + 33.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.32654071523159067524741510108, −13.52948583981186326489990294613, −12.55152190219553934859402573139, −11.28427386519896597449273695551, −10.76018453194102541336107386591, −9.695425325417755796342645046194, −7.18059511328272096859792979542, −6.35196862728925896401019461513, −3.92111462231285298760360254686, −2.06958223671315624321030731545, 4.54512695195024333992952217598, 5.63647688299919809064792959410, 6.45025585542269377940027715390, 8.636730928620953656082329767772, 9.203630303789757661902194064745, 10.99605404627654203933875124815, 12.44585735830709506307883716520, 13.42502103057974021485857239611, 14.94215372414671739505659017673, 15.73328201605330648608716054749

Graph of the $Z$-function along the critical line