Properties

Label 2-567-1.1-c3-0-17
Degree $2$
Conductor $567$
Sign $1$
Analytic cond. $33.4540$
Root an. cond. $5.78395$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.95·2-s + 16.5·4-s + 16.1·5-s − 7·7-s − 42.1·8-s − 79.9·10-s − 30.6·11-s − 78.0·13-s + 34.6·14-s + 76.7·16-s + 106.·17-s − 49.5·19-s + 266.·20-s + 151.·22-s + 39.0·23-s + 135.·25-s + 386.·26-s − 115.·28-s + 5.74·29-s + 184.·31-s − 42.5·32-s − 529.·34-s − 112.·35-s + 91.0·37-s + 245.·38-s − 680.·40-s − 82.8·41-s + ⋯
L(s)  = 1  − 1.75·2-s + 2.06·4-s + 1.44·5-s − 0.377·7-s − 1.86·8-s − 2.52·10-s − 0.839·11-s − 1.66·13-s + 0.661·14-s + 1.19·16-s + 1.52·17-s − 0.597·19-s + 2.98·20-s + 1.47·22-s + 0.353·23-s + 1.08·25-s + 2.91·26-s − 0.780·28-s + 0.0368·29-s + 1.06·31-s − 0.235·32-s − 2.67·34-s − 0.545·35-s + 0.404·37-s + 1.04·38-s − 2.69·40-s − 0.315·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(567\)    =    \(3^{4} \cdot 7\)
Sign: $1$
Analytic conductor: \(33.4540\)
Root analytic conductor: \(5.78395\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 567,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.8980394472\)
\(L(\frac12)\) \(\approx\) \(0.8980394472\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + 7T \)
good2 \( 1 + 4.95T + 8T^{2} \)
5 \( 1 - 16.1T + 125T^{2} \)
11 \( 1 + 30.6T + 1.33e3T^{2} \)
13 \( 1 + 78.0T + 2.19e3T^{2} \)
17 \( 1 - 106.T + 4.91e3T^{2} \)
19 \( 1 + 49.5T + 6.85e3T^{2} \)
23 \( 1 - 39.0T + 1.21e4T^{2} \)
29 \( 1 - 5.74T + 2.43e4T^{2} \)
31 \( 1 - 184.T + 2.97e4T^{2} \)
37 \( 1 - 91.0T + 5.06e4T^{2} \)
41 \( 1 + 82.8T + 6.89e4T^{2} \)
43 \( 1 + 91.2T + 7.95e4T^{2} \)
47 \( 1 - 237.T + 1.03e5T^{2} \)
53 \( 1 - 497.T + 1.48e5T^{2} \)
59 \( 1 + 4.20T + 2.05e5T^{2} \)
61 \( 1 - 626.T + 2.26e5T^{2} \)
67 \( 1 + 678.T + 3.00e5T^{2} \)
71 \( 1 - 747.T + 3.57e5T^{2} \)
73 \( 1 + 23.2T + 3.89e5T^{2} \)
79 \( 1 - 154.T + 4.93e5T^{2} \)
83 \( 1 - 282.T + 5.71e5T^{2} \)
89 \( 1 - 111.T + 7.04e5T^{2} \)
97 \( 1 - 1.11e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.977310175743996641667954246812, −9.763983323610604882221938588905, −8.761636538101372553722713065210, −7.78955210060696461456792752835, −7.02790630914707142203754381631, −6.03158612220103411059257095882, −5.09005012263719131677255340872, −2.79481786995232292735474777423, −2.09366544717222594117179156442, −0.72642467422810855322448811170, 0.72642467422810855322448811170, 2.09366544717222594117179156442, 2.79481786995232292735474777423, 5.09005012263719131677255340872, 6.03158612220103411059257095882, 7.02790630914707142203754381631, 7.78955210060696461456792752835, 8.761636538101372553722713065210, 9.763983323610604882221938588905, 9.977310175743996641667954246812

Graph of the $Z$-function along the critical line