Properties

Label 6-5610e3-1.1-c1e3-0-0
Degree $6$
Conductor $176558481000$
Sign $1$
Analytic cond. $89891.7$
Root an. cond. $6.69298$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·2-s + 3·3-s + 6·4-s − 3·5-s − 9·6-s − 10·8-s + 6·9-s + 9·10-s + 3·11-s + 18·12-s + 6·13-s − 9·15-s + 15·16-s + 3·17-s − 18·18-s + 6·19-s − 18·20-s − 9·22-s − 6·23-s − 30·24-s + 6·25-s − 18·26-s + 10·27-s + 6·29-s + 27·30-s − 21·32-s + 9·33-s + ⋯
L(s)  = 1  − 2.12·2-s + 1.73·3-s + 3·4-s − 1.34·5-s − 3.67·6-s − 3.53·8-s + 2·9-s + 2.84·10-s + 0.904·11-s + 5.19·12-s + 1.66·13-s − 2.32·15-s + 15/4·16-s + 0.727·17-s − 4.24·18-s + 1.37·19-s − 4.02·20-s − 1.91·22-s − 1.25·23-s − 6.12·24-s + 6/5·25-s − 3.53·26-s + 1.92·27-s + 1.11·29-s + 4.92·30-s − 3.71·32-s + 1.56·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{3} \cdot 3^{3} \cdot 5^{3} \cdot 11^{3} \cdot 17^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{3} \cdot 3^{3} \cdot 5^{3} \cdot 11^{3} \cdot 17^{3}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(2^{3} \cdot 3^{3} \cdot 5^{3} \cdot 11^{3} \cdot 17^{3}\)
Sign: $1$
Analytic conductor: \(89891.7\)
Root analytic conductor: \(6.69298\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 2^{3} \cdot 3^{3} \cdot 5^{3} \cdot 11^{3} \cdot 17^{3} ,\ ( \ : 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(4.271580338\)
\(L(\frac12)\) \(\approx\) \(4.271580338\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{3} \)
3$C_1$ \( ( 1 - T )^{3} \)
5$C_1$ \( ( 1 + T )^{3} \)
11$C_1$ \( ( 1 - T )^{3} \)
17$C_1$ \( ( 1 - T )^{3} \)
good7$A_4\times C_2$ \( 1 + 9 T^{2} - 8 T^{3} + 9 p T^{4} + p^{3} T^{6} \)
13$A_4\times C_2$ \( 1 - 6 T + 15 T^{2} - 20 T^{3} + 15 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
19$A_4\times C_2$ \( 1 - 6 T + 33 T^{2} - 92 T^{3} + 33 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
23$A_4\times C_2$ \( 1 + 6 T + 3 p T^{2} + 252 T^{3} + 3 p^{2} T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \)
29$A_4\times C_2$ \( 1 - 6 T + 51 T^{2} - 324 T^{3} + 51 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
31$A_4\times C_2$ \( 1 + 45 T^{2} + 64 T^{3} + 45 p T^{4} + p^{3} T^{6} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{3} \)
41$A_4\times C_2$ \( 1 + 12 T + 3 p T^{2} + 792 T^{3} + 3 p^{2} T^{4} + 12 p^{2} T^{5} + p^{3} T^{6} \)
43$A_4\times C_2$ \( 1 - 12 T + 165 T^{2} - 1040 T^{3} + 165 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \)
47$C_2$ \( ( 1 + p T^{2} )^{3} \)
53$A_4\times C_2$ \( 1 - 12 T + 123 T^{2} - 864 T^{3} + 123 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \)
59$A_4\times C_2$ \( 1 + 12 T + 213 T^{2} + 1440 T^{3} + 213 p T^{4} + 12 p^{2} T^{5} + p^{3} T^{6} \)
61$A_4\times C_2$ \( 1 + 6 T + 147 T^{2} + 580 T^{3} + 147 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \)
67$A_4\times C_2$ \( 1 - 18 T + 261 T^{2} - 2276 T^{3} + 261 p T^{4} - 18 p^{2} T^{5} + p^{3} T^{6} \)
71$A_4\times C_2$ \( 1 - 12 T + 249 T^{2} - 1728 T^{3} + 249 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \)
73$A_4\times C_2$ \( 1 - 6 T - 21 T^{2} + 988 T^{3} - 21 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
79$A_4\times C_2$ \( 1 - 6 T + 213 T^{2} - 812 T^{3} + 213 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
83$C_2$ \( ( 1 + p T^{2} )^{3} \)
89$C_6$ \( 1 + 6 T + 87 T^{2} + 180 T^{3} + 87 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \)
97$A_4\times C_2$ \( 1 - 12 T + 147 T^{2} - 1112 T^{3} + 147 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.57006201282935731841959725948, −6.93601432162072029837065118485, −6.90717405651552352666159131582, −6.85628378362805759587803291065, −6.33019241886840788402538095582, −6.18504667820549312809415756503, −6.08400593686636590066464182313, −5.57421519392470713549208927390, −5.19676208669575872352954717956, −5.15003248045183010093302783813, −4.46638089068816084238047892456, −4.36695565162260328168036682708, −4.02198601388576552129396280571, −3.60134251879763105098418998302, −3.56363611378848999582728635939, −3.53165298824927998794775453651, −2.92183819647627656909521950869, −2.77250695314359896284256720131, −2.63572999448106467616337422623, −1.95999795917963229250121980846, −1.72040069671895099491386429149, −1.56095787717521117669510821279, −1.03864286342807700427914527605, −0.72265503929385848148597520493, −0.60225196753976481438297452253, 0.60225196753976481438297452253, 0.72265503929385848148597520493, 1.03864286342807700427914527605, 1.56095787717521117669510821279, 1.72040069671895099491386429149, 1.95999795917963229250121980846, 2.63572999448106467616337422623, 2.77250695314359896284256720131, 2.92183819647627656909521950869, 3.53165298824927998794775453651, 3.56363611378848999582728635939, 3.60134251879763105098418998302, 4.02198601388576552129396280571, 4.36695565162260328168036682708, 4.46638089068816084238047892456, 5.15003248045183010093302783813, 5.19676208669575872352954717956, 5.57421519392470713549208927390, 6.08400593686636590066464182313, 6.18504667820549312809415756503, 6.33019241886840788402538095582, 6.85628378362805759587803291065, 6.90717405651552352666159131582, 6.93601432162072029837065118485, 7.57006201282935731841959725948

Graph of the $Z$-function along the critical line