Properties

Label 6-560e3-1.1-c5e3-0-0
Degree $6$
Conductor $175616000$
Sign $1$
Analytic cond. $724512.$
Root an. cond. $9.47707$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 26·3-s − 75·5-s − 147·7-s + 218·9-s + 194·11-s + 1.89e3·13-s + 1.95e3·15-s − 184·17-s − 1.21e3·19-s + 3.82e3·21-s − 3.18e3·23-s + 3.75e3·25-s − 340·27-s − 1.13e4·29-s − 9.20e3·31-s − 5.04e3·33-s + 1.10e4·35-s + 6.04e3·37-s − 4.91e4·39-s + 1.04e4·41-s − 2.81e4·43-s − 1.63e4·45-s − 2.33e3·47-s + 1.44e4·49-s + 4.78e3·51-s + 7.19e3·53-s − 1.45e4·55-s + ⋯
L(s)  = 1  − 1.66·3-s − 1.34·5-s − 1.13·7-s + 0.897·9-s + 0.483·11-s + 3.10·13-s + 2.23·15-s − 0.154·17-s − 0.770·19-s + 1.89·21-s − 1.25·23-s + 6/5·25-s − 0.0897·27-s − 2.50·29-s − 1.71·31-s − 0.806·33-s + 1.52·35-s + 0.725·37-s − 5.17·39-s + 0.970·41-s − 2.31·43-s − 1.20·45-s − 0.153·47-s + 6/7·49-s + 0.257·51-s + 0.351·53-s − 0.648·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 5^{3} \cdot 7^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 5^{3} \cdot 7^{3}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(2^{12} \cdot 5^{3} \cdot 7^{3}\)
Sign: $1$
Analytic conductor: \(724512.\)
Root analytic conductor: \(9.47707\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 2^{12} \cdot 5^{3} \cdot 7^{3} ,\ ( \ : 5/2, 5/2, 5/2 ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(1.050862177\)
\(L(\frac12)\) \(\approx\) \(1.050862177\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 + p^{2} T )^{3} \)
7$C_1$ \( ( 1 + p^{2} T )^{3} \)
good3$S_4\times C_2$ \( 1 + 26 T + 458 T^{2} + 6580 T^{3} + 458 p^{5} T^{4} + 26 p^{10} T^{5} + p^{15} T^{6} \)
11$S_4\times C_2$ \( 1 - 194 T + 467570 T^{2} - 59343320 T^{3} + 467570 p^{5} T^{4} - 194 p^{10} T^{5} + p^{15} T^{6} \)
13$S_4\times C_2$ \( 1 - 1892 T + 2201380 T^{2} - 1576044642 T^{3} + 2201380 p^{5} T^{4} - 1892 p^{10} T^{5} + p^{15} T^{6} \)
17$S_4\times C_2$ \( 1 + 184 T + 3362968 T^{2} + 655224238 T^{3} + 3362968 p^{5} T^{4} + 184 p^{10} T^{5} + p^{15} T^{6} \)
19$S_4\times C_2$ \( 1 + 1212 T + 5059117 T^{2} + 6142323016 T^{3} + 5059117 p^{5} T^{4} + 1212 p^{10} T^{5} + p^{15} T^{6} \)
23$S_4\times C_2$ \( 1 + 3188 T + 17832457 T^{2} + 40912698584 T^{3} + 17832457 p^{5} T^{4} + 3188 p^{10} T^{5} + p^{15} T^{6} \)
29$S_4\times C_2$ \( 1 + 11332 T + 103735252 T^{2} + 516534281986 T^{3} + 103735252 p^{5} T^{4} + 11332 p^{10} T^{5} + p^{15} T^{6} \)
31$S_4\times C_2$ \( 1 + 9200 T + 105170221 T^{2} + 517958085024 T^{3} + 105170221 p^{5} T^{4} + 9200 p^{10} T^{5} + p^{15} T^{6} \)
37$S_4\times C_2$ \( 1 - 6042 T + 17475547 T^{2} + 205942270820 T^{3} + 17475547 p^{5} T^{4} - 6042 p^{10} T^{5} + p^{15} T^{6} \)
41$S_4\times C_2$ \( 1 - 10442 T - 57000581 T^{2} + 56808109004 p T^{3} - 57000581 p^{5} T^{4} - 10442 p^{10} T^{5} + p^{15} T^{6} \)
43$S_4\times C_2$ \( 1 + 28112 T + 341799685 T^{2} + 3501414997872 T^{3} + 341799685 p^{5} T^{4} + 28112 p^{10} T^{5} + p^{15} T^{6} \)
47$S_4\times C_2$ \( 1 + 2330 T + 350119694 T^{2} + 2141058166004 T^{3} + 350119694 p^{5} T^{4} + 2330 p^{10} T^{5} + p^{15} T^{6} \)
53$S_4\times C_2$ \( 1 - 7190 T + 886217231 T^{2} - 5498148535868 T^{3} + 886217231 p^{5} T^{4} - 7190 p^{10} T^{5} + p^{15} T^{6} \)
59$S_4\times C_2$ \( 1 + 23760 T + 1782045217 T^{2} + 26972581939680 T^{3} + 1782045217 p^{5} T^{4} + 23760 p^{10} T^{5} + p^{15} T^{6} \)
61$S_4\times C_2$ \( 1 - 8722 T + 2048748359 T^{2} - 16323927488596 T^{3} + 2048748359 p^{5} T^{4} - 8722 p^{10} T^{5} + p^{15} T^{6} \)
67$S_4\times C_2$ \( 1 - 97572 T + 6989995401 T^{2} - 290063947898392 T^{3} + 6989995401 p^{5} T^{4} - 97572 p^{10} T^{5} + p^{15} T^{6} \)
71$S_4\times C_2$ \( 1 - 52816 T + 4015281077 T^{2} - 113061643027552 T^{3} + 4015281077 p^{5} T^{4} - 52816 p^{10} T^{5} + p^{15} T^{6} \)
73$S_4\times C_2$ \( 1 - 34870 T + 2359773831 T^{2} - 133025577319188 T^{3} + 2359773831 p^{5} T^{4} - 34870 p^{10} T^{5} + p^{15} T^{6} \)
79$S_4\times C_2$ \( 1 - 71546 T + 8951915502 T^{2} - 399703392100308 T^{3} + 8951915502 p^{5} T^{4} - 71546 p^{10} T^{5} + p^{15} T^{6} \)
83$S_4\times C_2$ \( 1 - 20920 T + 9119981081 T^{2} - 164280086250832 T^{3} + 9119981081 p^{5} T^{4} - 20920 p^{10} T^{5} + p^{15} T^{6} \)
89$S_4\times C_2$ \( 1 + 192622 T + 24833946187 T^{2} + 2119564435111516 T^{3} + 24833946187 p^{5} T^{4} + 192622 p^{10} T^{5} + p^{15} T^{6} \)
97$S_4\times C_2$ \( 1 - 116320 T + 18288918864 T^{2} - 1880364769603314 T^{3} + 18288918864 p^{5} T^{4} - 116320 p^{10} T^{5} + p^{15} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.964982340371306171658911579313, −8.380054826104336352513952410722, −8.168685556259521797011659292810, −8.033294506295406492042608370483, −7.61195895209557169347445982755, −7.03805558600839196747979657111, −6.96933500522815793493835145389, −6.41361511916206114931120149172, −6.39303045968969304270768083825, −6.11795902420223889757687230554, −5.65050109101790074513588947747, −5.43332786827475984682002012156, −5.39537635590379475625712092702, −4.40005478982277624485205198738, −4.37712160375559218419957879052, −3.90883114935657139425430831058, −3.58512865090349921572566549045, −3.37623858503745956566816234312, −3.32575475498991369904104729175, −2.20882076686943801623069361832, −1.88571272673941678036101718925, −1.54092138667914278296824079357, −0.76672497490702902157528151381, −0.50274251573027859734953194523, −0.35417190626203098101516444859, 0.35417190626203098101516444859, 0.50274251573027859734953194523, 0.76672497490702902157528151381, 1.54092138667914278296824079357, 1.88571272673941678036101718925, 2.20882076686943801623069361832, 3.32575475498991369904104729175, 3.37623858503745956566816234312, 3.58512865090349921572566549045, 3.90883114935657139425430831058, 4.37712160375559218419957879052, 4.40005478982277624485205198738, 5.39537635590379475625712092702, 5.43332786827475984682002012156, 5.65050109101790074513588947747, 6.11795902420223889757687230554, 6.39303045968969304270768083825, 6.41361511916206114931120149172, 6.96933500522815793493835145389, 7.03805558600839196747979657111, 7.61195895209557169347445982755, 8.033294506295406492042608370483, 8.168685556259521797011659292810, 8.380054826104336352513952410722, 8.964982340371306171658911579313

Graph of the $Z$-function along the critical line