Properties

Label 12-560e6-1.1-c1e6-0-0
Degree $12$
Conductor $3.084\times 10^{16}$
Sign $1$
Analytic cond. $7994.49$
Root an. cond. $2.11462$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·9-s − 14·11-s + 8·19-s − 5·25-s − 6·29-s − 20·31-s + 36·41-s − 3·49-s + 12·59-s + 48·61-s − 8·71-s + 34·79-s + 14·81-s − 70·99-s − 8·101-s − 10·109-s + 65·121-s − 8·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  + 5/3·9-s − 4.22·11-s + 1.83·19-s − 25-s − 1.11·29-s − 3.59·31-s + 5.62·41-s − 3/7·49-s + 1.56·59-s + 6.14·61-s − 0.949·71-s + 3.82·79-s + 14/9·81-s − 7.03·99-s − 0.796·101-s − 0.957·109-s + 5.90·121-s − 0.715·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 5^{6} \cdot 7^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 5^{6} \cdot 7^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(2^{24} \cdot 5^{6} \cdot 7^{6}\)
Sign: $1$
Analytic conductor: \(7994.49\)
Root analytic conductor: \(2.11462\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 2^{24} \cdot 5^{6} \cdot 7^{6} ,\ ( \ : [1/2]^{6} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.533489111\)
\(L(\frac12)\) \(\approx\) \(2.533489111\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + p T^{2} + 8 T^{3} + p^{2} T^{4} + p^{3} T^{6} \)
7 \( ( 1 + T^{2} )^{3} \)
good3 \( 1 - 5 T^{2} + 11 T^{4} - 26 T^{6} + 11 p^{2} T^{8} - 5 p^{4} T^{10} + p^{6} T^{12} \)
11 \( ( 1 + 7 T + 41 T^{2} + 146 T^{3} + 41 p T^{4} + 7 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
13 \( 1 - 9 T^{2} + 491 T^{4} - 2882 T^{6} + 491 p^{2} T^{8} - 9 p^{4} T^{10} + p^{6} T^{12} \)
17 \( 1 - 53 T^{2} + 1539 T^{4} - 31118 T^{6} + 1539 p^{2} T^{8} - 53 p^{4} T^{10} + p^{6} T^{12} \)
19 \( ( 1 - 4 T + 43 T^{2} - 160 T^{3} + 43 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
23 \( 1 - 2 p T^{2} + 1887 T^{4} - 43972 T^{6} + 1887 p^{2} T^{8} - 2 p^{5} T^{10} + p^{6} T^{12} \)
29 \( ( 1 + 3 T + 15 T^{2} + 66 T^{3} + 15 p T^{4} + 3 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
31 \( ( 1 + 10 T + 101 T^{2} + 540 T^{3} + 101 p T^{4} + 10 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
37 \( ( 1 - 38 T^{2} + p^{2} T^{4} )^{3} \)
41 \( ( 1 - 18 T + 191 T^{2} - 1388 T^{3} + 191 p T^{4} - 18 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
43 \( 1 - 178 T^{2} + 15575 T^{4} - 836124 T^{6} + 15575 p^{2} T^{8} - 178 p^{4} T^{10} + p^{6} T^{12} \)
47 \( 1 - 105 T^{2} + 6339 T^{4} - 285798 T^{6} + 6339 p^{2} T^{8} - 105 p^{4} T^{10} + p^{6} T^{12} \)
53 \( 1 - 130 T^{2} + 13655 T^{4} - 792060 T^{6} + 13655 p^{2} T^{8} - 130 p^{4} T^{10} + p^{6} T^{12} \)
59 \( ( 1 - 6 T + 99 T^{2} - 752 T^{3} + 99 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
61 \( ( 1 - 24 T + 365 T^{2} - 3368 T^{3} + 365 p T^{4} - 24 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
67 \( 1 - 174 T^{2} + 20567 T^{4} - 1533188 T^{6} + 20567 p^{2} T^{8} - 174 p^{4} T^{10} + p^{6} T^{12} \)
71 \( ( 1 + 4 T + 193 T^{2} + 504 T^{3} + 193 p T^{4} + 4 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
73 \( 1 - 346 T^{2} + 55487 T^{4} - 5172972 T^{6} + 55487 p^{2} T^{8} - 346 p^{4} T^{10} + p^{6} T^{12} \)
79 \( ( 1 - 17 T + 205 T^{2} - 2138 T^{3} + 205 p T^{4} - 17 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
83 \( 1 - 70 T^{2} + 1179 T^{4} + 304148 T^{6} + 1179 p^{2} T^{8} - 70 p^{4} T^{10} + p^{6} T^{12} \)
89 \( ( 1 + 95 T^{2} + 464 T^{3} + 95 p T^{4} + p^{3} T^{6} )^{2} \)
97 \( 1 - 469 T^{2} + 98339 T^{4} - 12075534 T^{6} + 98339 p^{2} T^{8} - 469 p^{4} T^{10} + p^{6} T^{12} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.56398925708776668727302718891, −5.47866603137611567964675639092, −5.46359701149597170961347255797, −5.44657680420239610876292575015, −5.10682264309828942400842904404, −5.03825537725062467941510084184, −4.94506077533364295543517149083, −4.50790816033526812573190738198, −4.26698219879601631519074926766, −4.19771308081562084190290842048, −3.96315645690292442856014266834, −3.72240456151987258086946270619, −3.68748847284982373605930481326, −3.55264762165505726585407964457, −3.08378592155570602746587790482, −2.96487915006744858357021861503, −2.63661425687114358251869747208, −2.35820578998841619374724966566, −2.35594546444084911528761148237, −2.16402511441150797442928135567, −1.96853018671105723091098124064, −1.55334613828464765983705725699, −1.05132838118880546337476731993, −0.70244799795944258119014251231, −0.44648047525435250959307692164, 0.44648047525435250959307692164, 0.70244799795944258119014251231, 1.05132838118880546337476731993, 1.55334613828464765983705725699, 1.96853018671105723091098124064, 2.16402511441150797442928135567, 2.35594546444084911528761148237, 2.35820578998841619374724966566, 2.63661425687114358251869747208, 2.96487915006744858357021861503, 3.08378592155570602746587790482, 3.55264762165505726585407964457, 3.68748847284982373605930481326, 3.72240456151987258086946270619, 3.96315645690292442856014266834, 4.19771308081562084190290842048, 4.26698219879601631519074926766, 4.50790816033526812573190738198, 4.94506077533364295543517149083, 5.03825537725062467941510084184, 5.10682264309828942400842904404, 5.44657680420239610876292575015, 5.46359701149597170961347255797, 5.47866603137611567964675639092, 5.56398925708776668727302718891

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.