| L(s) = 1 | + (−0.0691 + 0.119i)3-s + (5.04 + 8.73i)5-s + (18.4 − 1.05i)7-s + (13.4 + 23.3i)9-s + (9.33 − 16.1i)11-s + 10.0·13-s − 1.39·15-s + (−36.8 + 63.7i)17-s + (−38.0 − 65.8i)19-s + (−1.15 + 2.28i)21-s + (−73.4 − 127. i)23-s + (11.6 − 20.1i)25-s − 7.46·27-s − 157.·29-s + (−34.9 + 60.4i)31-s + ⋯ |
| L(s) = 1 | + (−0.0132 + 0.0230i)3-s + (0.451 + 0.781i)5-s + (0.998 − 0.0567i)7-s + (0.499 + 0.865i)9-s + (0.255 − 0.443i)11-s + 0.215·13-s − 0.0239·15-s + (−0.525 + 0.909i)17-s + (−0.459 − 0.795i)19-s + (−0.0119 + 0.0237i)21-s + (−0.665 − 1.15i)23-s + (0.0931 − 0.161i)25-s − 0.0531·27-s − 1.00·29-s + (−0.202 + 0.350i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 56 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.869 - 0.494i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 56 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.869 - 0.494i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(1.54139 + 0.407542i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.54139 + 0.407542i\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 7 | \( 1 + (-18.4 + 1.05i)T \) |
| good | 3 | \( 1 + (0.0691 - 0.119i)T + (-13.5 - 23.3i)T^{2} \) |
| 5 | \( 1 + (-5.04 - 8.73i)T + (-62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (-9.33 + 16.1i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 - 10.0T + 2.19e3T^{2} \) |
| 17 | \( 1 + (36.8 - 63.7i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (38.0 + 65.8i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (73.4 + 127. i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + 157.T + 2.43e4T^{2} \) |
| 31 | \( 1 + (34.9 - 60.4i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (154. + 268. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 - 482.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 17.3T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-173. - 300. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-36.7 + 63.6i)T + (-7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (352. - 610. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (420. + 728. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-445. + 772. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + 525.T + 3.57e5T^{2} \) |
| 73 | \( 1 + (188. - 325. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (616. + 1.06e3i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + 771.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-87.6 - 151. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 - 1.31e3T + 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.65187352285414415441324821246, −13.93446112570549845507130669980, −12.70660083113231264456333147642, −10.98502865276577265670628646742, −10.61437520414087864058403516712, −8.831657745736344472981120551360, −7.53197760061148274445282167113, −6.09277128554813483199837231934, −4.40038799964263214820310515452, −2.12918730859827614386712297076,
1.54157623201242190477892817692, 4.23553283031908743570103503564, 5.66533613846618373688366137702, 7.35751192589140488286398480565, 8.826463145363937816124786875799, 9.785447113212345961083300406888, 11.38870459193209913053706833087, 12.39468794052016522420268386441, 13.51337710466603223866923623237, 14.69092306143577218847992898089