Properties

Label 2-56-1.1-c9-0-5
Degree $2$
Conductor $56$
Sign $1$
Analytic cond. $28.8420$
Root an. cond. $5.37047$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 128.·3-s − 1.33e3·5-s + 2.40e3·7-s − 3.18e3·9-s − 2.22e4·11-s + 1.85e5·13-s − 1.71e5·15-s + 3.51e5·17-s + 1.10e6·19-s + 3.08e5·21-s − 1.99e6·23-s − 1.75e5·25-s − 2.93e6·27-s + 3.18e6·29-s + 7.42e6·31-s − 2.86e6·33-s − 3.20e6·35-s + 1.11e7·37-s + 2.37e7·39-s + 2.22e7·41-s + 1.98e7·43-s + 4.24e6·45-s − 5.69e5·47-s + 5.76e6·49-s + 4.51e7·51-s − 6.76e7·53-s + 2.97e7·55-s + ⋯
L(s)  = 1  + 0.915·3-s − 0.954·5-s + 0.377·7-s − 0.161·9-s − 0.458·11-s + 1.79·13-s − 0.873·15-s + 1.02·17-s + 1.95·19-s + 0.346·21-s − 1.48·23-s − 0.0897·25-s − 1.06·27-s + 0.835·29-s + 1.44·31-s − 0.420·33-s − 0.360·35-s + 0.978·37-s + 1.64·39-s + 1.23·41-s + 0.886·43-s + 0.154·45-s − 0.0170·47-s + 0.142·49-s + 0.935·51-s − 1.17·53-s + 0.437·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 56 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 56 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(56\)    =    \(2^{3} \cdot 7\)
Sign: $1$
Analytic conductor: \(28.8420\)
Root analytic conductor: \(5.37047\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 56,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(2.506412936\)
\(L(\frac12)\) \(\approx\) \(2.506412936\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - 2.40e3T \)
good3 \( 1 - 128.T + 1.96e4T^{2} \)
5 \( 1 + 1.33e3T + 1.95e6T^{2} \)
11 \( 1 + 2.22e4T + 2.35e9T^{2} \)
13 \( 1 - 1.85e5T + 1.06e10T^{2} \)
17 \( 1 - 3.51e5T + 1.18e11T^{2} \)
19 \( 1 - 1.10e6T + 3.22e11T^{2} \)
23 \( 1 + 1.99e6T + 1.80e12T^{2} \)
29 \( 1 - 3.18e6T + 1.45e13T^{2} \)
31 \( 1 - 7.42e6T + 2.64e13T^{2} \)
37 \( 1 - 1.11e7T + 1.29e14T^{2} \)
41 \( 1 - 2.22e7T + 3.27e14T^{2} \)
43 \( 1 - 1.98e7T + 5.02e14T^{2} \)
47 \( 1 + 5.69e5T + 1.11e15T^{2} \)
53 \( 1 + 6.76e7T + 3.29e15T^{2} \)
59 \( 1 - 6.89e7T + 8.66e15T^{2} \)
61 \( 1 + 9.40e7T + 1.16e16T^{2} \)
67 \( 1 - 7.82e7T + 2.72e16T^{2} \)
71 \( 1 - 1.61e8T + 4.58e16T^{2} \)
73 \( 1 - 1.68e8T + 5.88e16T^{2} \)
79 \( 1 + 3.52e8T + 1.19e17T^{2} \)
83 \( 1 - 1.80e8T + 1.86e17T^{2} \)
89 \( 1 + 8.90e8T + 3.50e17T^{2} \)
97 \( 1 - 5.34e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.67941605621271854674270687685, −12.06761697639589523946896111265, −11.17482019418171147203415852741, −9.651738908862816910736983467061, −8.174024261304149969154381203850, −7.85341896366426524742960930714, −5.82212738134335334978610819453, −3.98816829751607567870208128470, −2.95104569017411972192904587669, −1.02437846945909118016048495455, 1.02437846945909118016048495455, 2.95104569017411972192904587669, 3.98816829751607567870208128470, 5.82212738134335334978610819453, 7.85341896366426524742960930714, 8.174024261304149969154381203850, 9.651738908862816910736983467061, 11.17482019418171147203415852741, 12.06761697639589523946896111265, 13.67941605621271854674270687685

Graph of the $Z$-function along the critical line