Properties

Label 4-5520e2-1.1-c1e2-0-6
Degree $4$
Conductor $30470400$
Sign $1$
Analytic cond. $1942.81$
Root an. cond. $6.63908$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 2·5-s + 6·7-s + 3·9-s + 2·11-s + 2·13-s + 4·15-s − 8·17-s + 10·19-s + 12·21-s − 2·23-s + 3·25-s + 4·27-s − 4·29-s + 6·31-s + 4·33-s + 12·35-s + 10·37-s + 4·39-s − 4·41-s + 16·43-s + 6·45-s + 2·47-s + 13·49-s − 16·51-s − 8·53-s + 4·55-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.894·5-s + 2.26·7-s + 9-s + 0.603·11-s + 0.554·13-s + 1.03·15-s − 1.94·17-s + 2.29·19-s + 2.61·21-s − 0.417·23-s + 3/5·25-s + 0.769·27-s − 0.742·29-s + 1.07·31-s + 0.696·33-s + 2.02·35-s + 1.64·37-s + 0.640·39-s − 0.624·41-s + 2.43·43-s + 0.894·45-s + 0.291·47-s + 13/7·49-s − 2.24·51-s − 1.09·53-s + 0.539·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 30470400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 30470400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(30470400\)    =    \(2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(1942.81\)
Root analytic conductor: \(6.63908\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 30470400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(11.66088298\)
\(L(\frac12)\) \(\approx\) \(11.66088298\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 - T )^{2} \)
5$C_1$ \( ( 1 - T )^{2} \)
23$C_1$ \( ( 1 + T )^{2} \)
good7$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
11$D_{4}$ \( 1 - 2 T + 20 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 - 2 T - 2 p T^{3} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 8 T + 47 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 - 10 T + 60 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 + 4 T + 59 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 - 6 T + 23 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 - 10 T + 51 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + 4 T + 83 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 - 16 T + 138 T^{2} - 16 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - 2 T + 20 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 + 8 T + 119 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 4 T + 95 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 - 2 T - 24 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - 6 T + 131 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 4 T + 143 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 2 T + 72 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
79$C_2^2$ \( 1 + 110 T^{2} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 24 T + 307 T^{2} - 24 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - 12 T + 202 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
97$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.129347280251093242153330823246, −8.019663219313853471754741685138, −7.69816142998773634572117553536, −7.57057733184152510942458826939, −6.94156256406943812965732465440, −6.58297550159701544326427455596, −6.17058105511240596548364711953, −5.92628983817436065660355130575, −5.19666943101418800582618283153, −5.09536655742963787837109325148, −4.62726337760161498988752723831, −4.40771652018598276140934925013, −3.72328784874369764541000643198, −3.70387052193895692338936175229, −2.81065045947876252454656091501, −2.48825745595824878734006289163, −2.15800128589694955721755914532, −1.67900826087782248659776801165, −1.20455765263658779787805711143, −0.922397691644222319169880871688, 0.922397691644222319169880871688, 1.20455765263658779787805711143, 1.67900826087782248659776801165, 2.15800128589694955721755914532, 2.48825745595824878734006289163, 2.81065045947876252454656091501, 3.70387052193895692338936175229, 3.72328784874369764541000643198, 4.40771652018598276140934925013, 4.62726337760161498988752723831, 5.09536655742963787837109325148, 5.19666943101418800582618283153, 5.92628983817436065660355130575, 6.17058105511240596548364711953, 6.58297550159701544326427455596, 6.94156256406943812965732465440, 7.57057733184152510942458826939, 7.69816142998773634572117553536, 8.019663219313853471754741685138, 8.129347280251093242153330823246

Graph of the $Z$-function along the critical line