Properties

Label 4-552e2-1.1-c1e2-0-11
Degree $4$
Conductor $304704$
Sign $1$
Analytic cond. $19.4281$
Root an. cond. $2.09946$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 2·4-s − 8·5-s + 9-s + 4·12-s + 16·15-s + 4·16-s − 4·19-s + 16·20-s + 2·23-s + 38·25-s + 4·27-s − 2·36-s − 12·43-s − 8·45-s − 8·48-s + 6·49-s − 24·53-s + 8·57-s − 32·60-s − 8·64-s + 4·67-s − 4·69-s − 16·71-s − 12·73-s − 76·75-s + 8·76-s + ⋯
L(s)  = 1  − 1.15·3-s − 4-s − 3.57·5-s + 1/3·9-s + 1.15·12-s + 4.13·15-s + 16-s − 0.917·19-s + 3.57·20-s + 0.417·23-s + 38/5·25-s + 0.769·27-s − 1/3·36-s − 1.82·43-s − 1.19·45-s − 1.15·48-s + 6/7·49-s − 3.29·53-s + 1.05·57-s − 4.13·60-s − 64-s + 0.488·67-s − 0.481·69-s − 1.89·71-s − 1.40·73-s − 8.77·75-s + 0.917·76-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 304704 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 304704 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(304704\)    =    \(2^{6} \cdot 3^{2} \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(19.4281\)
Root analytic conductor: \(2.09946\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 304704,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T^{2} \)
3$C_2$ \( 1 + 2 T + p T^{2} \)
23$C_1$ \( ( 1 - T )^{2} \)
good5$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
7$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 66 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 110 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 114 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
79$C_2^2$ \( 1 - 150 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 134 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 106 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.58078429484708039132182623579, −10.53685470125070527016905996099, −9.756755912664020849478788683959, −8.953665078443508240388645990069, −8.700517318933019916393915957414, −8.230920084641081213512856526707, −8.017511362948952905068003232191, −7.40168553661686659987483610786, −7.16781318755683762523348533339, −6.49150672972918407298728380809, −6.02896847189947943260690942753, −5.00827034516637870928338627933, −4.89890506441801664898339016546, −4.33935575664192211844157380596, −4.05671433118967911994455520199, −3.31234224582318748799997723500, −3.09905732341373504883860162519, −1.14087997679507118761902052691, 0, 0, 1.14087997679507118761902052691, 3.09905732341373504883860162519, 3.31234224582318748799997723500, 4.05671433118967911994455520199, 4.33935575664192211844157380596, 4.89890506441801664898339016546, 5.00827034516637870928338627933, 6.02896847189947943260690942753, 6.49150672972918407298728380809, 7.16781318755683762523348533339, 7.40168553661686659987483610786, 8.017511362948952905068003232191, 8.230920084641081213512856526707, 8.700517318933019916393915957414, 8.953665078443508240388645990069, 9.756755912664020849478788683959, 10.53685470125070527016905996099, 10.58078429484708039132182623579

Graph of the $Z$-function along the critical line