Properties

Label 2-552-184.13-c1-0-39
Degree $2$
Conductor $552$
Sign $-0.943 + 0.330i$
Analytic cond. $4.40774$
Root an. cond. $2.09946$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.11 + 0.869i)2-s + (0.540 − 0.841i)3-s + (0.489 − 1.93i)4-s + (−0.756 − 0.345i)5-s + (0.127 + 1.40i)6-s + (−3.66 − 1.07i)7-s + (1.13 + 2.58i)8-s + (−0.415 − 0.909i)9-s + (1.14 − 0.272i)10-s + (2.56 + 2.22i)11-s + (−1.36 − 1.46i)12-s + (0.635 + 2.16i)13-s + (5.02 − 1.98i)14-s + (−0.699 + 0.449i)15-s + (−3.52 − 1.89i)16-s + (−1.05 − 7.35i)17-s + ⋯
L(s)  = 1  + (−0.788 + 0.614i)2-s + (0.312 − 0.485i)3-s + (0.244 − 0.969i)4-s + (−0.338 − 0.154i)5-s + (0.0522 + 0.574i)6-s + (−1.38 − 0.406i)7-s + (0.402 + 0.915i)8-s + (−0.138 − 0.303i)9-s + (0.361 − 0.0860i)10-s + (0.772 + 0.669i)11-s + (−0.394 − 0.421i)12-s + (0.176 + 0.600i)13-s + (1.34 − 0.530i)14-s + (−0.180 + 0.116i)15-s + (−0.880 − 0.474i)16-s + (−0.256 − 1.78i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.943 + 0.330i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.943 + 0.330i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(552\)    =    \(2^{3} \cdot 3 \cdot 23\)
Sign: $-0.943 + 0.330i$
Analytic conductor: \(4.40774\)
Root analytic conductor: \(2.09946\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{552} (13, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 552,\ (\ :1/2),\ -0.943 + 0.330i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0274468 - 0.161428i\)
\(L(\frac12)\) \(\approx\) \(0.0274468 - 0.161428i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.11 - 0.869i)T \)
3 \( 1 + (-0.540 + 0.841i)T \)
23 \( 1 + (-2.22 - 4.25i)T \)
good5 \( 1 + (0.756 + 0.345i)T + (3.27 + 3.77i)T^{2} \)
7 \( 1 + (3.66 + 1.07i)T + (5.88 + 3.78i)T^{2} \)
11 \( 1 + (-2.56 - 2.22i)T + (1.56 + 10.8i)T^{2} \)
13 \( 1 + (-0.635 - 2.16i)T + (-10.9 + 7.02i)T^{2} \)
17 \( 1 + (1.05 + 7.35i)T + (-16.3 + 4.78i)T^{2} \)
19 \( 1 + (5.92 + 0.852i)T + (18.2 + 5.35i)T^{2} \)
29 \( 1 + (6.91 - 0.994i)T + (27.8 - 8.17i)T^{2} \)
31 \( 1 + (5.48 - 3.52i)T + (12.8 - 28.1i)T^{2} \)
37 \( 1 + (6.41 - 2.92i)T + (24.2 - 27.9i)T^{2} \)
41 \( 1 + (2.34 - 5.13i)T + (-26.8 - 30.9i)T^{2} \)
43 \( 1 + (0.890 - 1.38i)T + (-17.8 - 39.1i)T^{2} \)
47 \( 1 + 6.67T + 47T^{2} \)
53 \( 1 + (-2.73 + 9.32i)T + (-44.5 - 28.6i)T^{2} \)
59 \( 1 + (-1.99 - 6.78i)T + (-49.6 + 31.8i)T^{2} \)
61 \( 1 + (2.08 + 3.23i)T + (-25.3 + 55.4i)T^{2} \)
67 \( 1 + (0.672 - 0.582i)T + (9.53 - 66.3i)T^{2} \)
71 \( 1 + (1.95 + 2.25i)T + (-10.1 + 70.2i)T^{2} \)
73 \( 1 + (-1.68 + 11.7i)T + (-70.0 - 20.5i)T^{2} \)
79 \( 1 + (-5.10 + 1.50i)T + (66.4 - 42.7i)T^{2} \)
83 \( 1 + (-4.72 + 2.15i)T + (54.3 - 62.7i)T^{2} \)
89 \( 1 + (-14.8 - 9.51i)T + (36.9 + 80.9i)T^{2} \)
97 \( 1 + (-7.16 + 15.6i)T + (-63.5 - 73.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.00773063323946429644759865465, −9.333435053175560971622945386046, −8.794926119405318603141520678041, −7.48186350041764509703641658235, −6.90022955446900930363425197193, −6.32777885698611988793037788845, −4.83978703221371927153457672832, −3.48551447161175791740760665456, −1.88579143498977374376659751866, −0.11014190068710026401414286453, 2.12589235833445762991116523208, 3.59463874812330681757828785461, 3.79362339107439562477020009289, 5.90300787420335770565734857470, 6.70946675841753591431705975368, 7.973186866022070225963783580287, 8.837474267199460770928912098315, 9.274147229858789215113052145965, 10.46512681194055441887890492055, 10.77027314689130024234899910872

Graph of the $Z$-function along the critical line