Properties

Label 16-55e8-1.1-c1e8-0-1
Degree $16$
Conductor $8.373\times 10^{13}$
Sign $1$
Analytic cond. $0.00138394$
Root an. cond. $0.662704$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 5·3-s + 3·4-s + 2·5-s + 10·6-s − 7-s − 4·8-s + 13·9-s − 4·10-s + 3·11-s − 15·12-s − 2·13-s + 2·14-s − 10·15-s + 4·16-s − 13·17-s − 26·18-s + 15·19-s + 6·20-s + 5·21-s − 6·22-s + 10·23-s + 20·24-s + 25-s + 4·26-s − 25·27-s − 3·28-s + ⋯
L(s)  = 1  − 1.41·2-s − 2.88·3-s + 3/2·4-s + 0.894·5-s + 4.08·6-s − 0.377·7-s − 1.41·8-s + 13/3·9-s − 1.26·10-s + 0.904·11-s − 4.33·12-s − 0.554·13-s + 0.534·14-s − 2.58·15-s + 16-s − 3.15·17-s − 6.12·18-s + 3.44·19-s + 1.34·20-s + 1.09·21-s − 1.27·22-s + 2.08·23-s + 4.08·24-s + 1/5·25-s + 0.784·26-s − 4.81·27-s − 0.566·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{8} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{8} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(5^{8} \cdot 11^{8}\)
Sign: $1$
Analytic conductor: \(0.00138394\)
Root analytic conductor: \(0.662704\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 5^{8} \cdot 11^{8} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.07956506359\)
\(L(\frac12)\) \(\approx\) \(0.07956506359\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
11 \( 1 - 3 T + 18 T^{2} + 9 T^{3} + 75 T^{4} + 9 p T^{5} + 18 p^{2} T^{6} - 3 p^{3} T^{7} + p^{4} T^{8} \)
good2 \( 1 + p T + T^{2} + T^{4} - p^{2} T^{5} - 5 T^{6} - p^{2} T^{7} - 3 T^{8} - p^{3} T^{9} - 5 p^{2} T^{10} - p^{5} T^{11} + p^{4} T^{12} + p^{6} T^{14} + p^{8} T^{15} + p^{8} T^{16} \)
3 \( 1 + 5 T + 4 p T^{2} + 20 T^{3} + 10 p T^{4} + 5 p T^{5} - 26 p T^{6} - 250 T^{7} - 461 T^{8} - 250 p T^{9} - 26 p^{3} T^{10} + 5 p^{4} T^{11} + 10 p^{5} T^{12} + 20 p^{5} T^{13} + 4 p^{7} T^{14} + 5 p^{7} T^{15} + p^{8} T^{16} \)
7 \( 1 + T - p T^{2} - 3 T^{3} - 19 T^{4} - 244 T^{5} + 60 p T^{6} + 1206 T^{7} - 1671 T^{8} + 1206 p T^{9} + 60 p^{3} T^{10} - 244 p^{3} T^{11} - 19 p^{4} T^{12} - 3 p^{5} T^{13} - p^{7} T^{14} + p^{7} T^{15} + p^{8} T^{16} \)
13 \( 1 + 2 T - 5 T^{2} - 17 T^{3} - T^{4} - 379 T^{5} + 659 T^{6} + 226 T^{7} - 4079 T^{8} + 226 p T^{9} + 659 p^{2} T^{10} - 379 p^{3} T^{11} - p^{4} T^{12} - 17 p^{5} T^{13} - 5 p^{6} T^{14} + 2 p^{7} T^{15} + p^{8} T^{16} \)
17 \( 1 + 13 T + 62 T^{2} + 211 T^{3} + 1328 T^{4} + 5444 T^{5} + 6114 T^{6} + 32568 T^{7} + 312583 T^{8} + 32568 p T^{9} + 6114 p^{2} T^{10} + 5444 p^{3} T^{11} + 1328 p^{4} T^{12} + 211 p^{5} T^{13} + 62 p^{6} T^{14} + 13 p^{7} T^{15} + p^{8} T^{16} \)
19 \( 1 - 15 T + 97 T^{2} - 360 T^{3} + 673 T^{4} + 610 T^{5} - 686 T^{6} - 56575 T^{7} + 375305 T^{8} - 56575 p T^{9} - 686 p^{2} T^{10} + 610 p^{3} T^{11} + 673 p^{4} T^{12} - 360 p^{5} T^{13} + 97 p^{6} T^{14} - 15 p^{7} T^{15} + p^{8} T^{16} \)
23 \( ( 1 - 5 T + 96 T^{2} - 335 T^{3} + 3347 T^{4} - 335 p T^{5} + 96 p^{2} T^{6} - 5 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
29 \( 1 + 9 T + 41 T^{2} + 450 T^{3} + 4023 T^{4} + 21060 T^{5} + 127504 T^{6} + 821169 T^{7} + 4563203 T^{8} + 821169 p T^{9} + 127504 p^{2} T^{10} + 21060 p^{3} T^{11} + 4023 p^{4} T^{12} + 450 p^{5} T^{13} + 41 p^{6} T^{14} + 9 p^{7} T^{15} + p^{8} T^{16} \)
31 \( 1 + 10 T + 63 T^{2} + 95 T^{3} - 1617 T^{4} - 16015 T^{5} - 48789 T^{6} + 115000 T^{7} + 1966355 T^{8} + 115000 p T^{9} - 48789 p^{2} T^{10} - 16015 p^{3} T^{11} - 1617 p^{4} T^{12} + 95 p^{5} T^{13} + 63 p^{6} T^{14} + 10 p^{7} T^{15} + p^{8} T^{16} \)
37 \( 1 - 24 T + 285 T^{2} - 2504 T^{3} + 20454 T^{4} - 167192 T^{5} + 1266601 T^{6} - 8436018 T^{7} + 52041811 T^{8} - 8436018 p T^{9} + 1266601 p^{2} T^{10} - 167192 p^{3} T^{11} + 20454 p^{4} T^{12} - 2504 p^{5} T^{13} + 285 p^{6} T^{14} - 24 p^{7} T^{15} + p^{8} T^{16} \)
41 \( 1 - 8 T + 11 T^{2} - 52 T^{3} + 2396 T^{4} - 11404 T^{5} - 17571 T^{6} - 488156 T^{7} + 6637407 T^{8} - 488156 p T^{9} - 17571 p^{2} T^{10} - 11404 p^{3} T^{11} + 2396 p^{4} T^{12} - 52 p^{5} T^{13} + 11 p^{6} T^{14} - 8 p^{7} T^{15} + p^{8} T^{16} \)
43 \( ( 1 + 19 T + 293 T^{2} + 2740 T^{3} + 21711 T^{4} + 2740 p T^{5} + 293 p^{2} T^{6} + 19 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
47 \( 1 - 71 T^{2} - 145 T^{3} + 3737 T^{4} + 7995 T^{5} - 136173 T^{6} - 2730 p T^{7} + 3965375 T^{8} - 2730 p^{2} T^{9} - 136173 p^{2} T^{10} + 7995 p^{3} T^{11} + 3737 p^{4} T^{12} - 145 p^{5} T^{13} - 71 p^{6} T^{14} + p^{8} T^{16} \)
53 \( 1 - 13 T - 21 T^{2} + 1139 T^{3} - 4299 T^{4} - 68344 T^{5} + 622530 T^{6} + 1982270 T^{7} - 45891153 T^{8} + 1982270 p T^{9} + 622530 p^{2} T^{10} - 68344 p^{3} T^{11} - 4299 p^{4} T^{12} + 1139 p^{5} T^{13} - 21 p^{6} T^{14} - 13 p^{7} T^{15} + p^{8} T^{16} \)
59 \( 1 + 27 T + 267 T^{2} + 1053 T^{3} + 1707 T^{4} + 10170 T^{5} - 256612 T^{6} - 7292916 T^{7} - 76795335 T^{8} - 7292916 p T^{9} - 256612 p^{2} T^{10} + 10170 p^{3} T^{11} + 1707 p^{4} T^{12} + 1053 p^{5} T^{13} + 267 p^{6} T^{14} + 27 p^{7} T^{15} + p^{8} T^{16} \)
61 \( 1 - 6 T - 112 T^{2} + 1194 T^{3} + 2297 T^{4} - 63510 T^{5} + 270712 T^{6} + 1244412 T^{7} - 19660775 T^{8} + 1244412 p T^{9} + 270712 p^{2} T^{10} - 63510 p^{3} T^{11} + 2297 p^{4} T^{12} + 1194 p^{5} T^{13} - 112 p^{6} T^{14} - 6 p^{7} T^{15} + p^{8} T^{16} \)
67 \( ( 1 + 19 T + 290 T^{2} + 2805 T^{3} + 25803 T^{4} + 2805 p T^{5} + 290 p^{2} T^{6} + 19 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
71 \( 1 + 20 T + p T^{2} - 450 T^{3} + 5350 T^{4} + 64050 T^{5} - 426451 T^{6} - 1694530 T^{7} + 35725759 T^{8} - 1694530 p T^{9} - 426451 p^{2} T^{10} + 64050 p^{3} T^{11} + 5350 p^{4} T^{12} - 450 p^{5} T^{13} + p^{7} T^{14} + 20 p^{7} T^{15} + p^{8} T^{16} \)
73 \( 1 - 13 T - 90 T^{2} + 1953 T^{3} - 1346 T^{4} - 97114 T^{5} + 6288 p T^{6} + 1063856 T^{7} - 22325469 T^{8} + 1063856 p T^{9} + 6288 p^{3} T^{10} - 97114 p^{3} T^{11} - 1346 p^{4} T^{12} + 1953 p^{5} T^{13} - 90 p^{6} T^{14} - 13 p^{7} T^{15} + p^{8} T^{16} \)
79 \( 1 - 37 T + 540 T^{2} - 3230 T^{3} - 14490 T^{4} + 396919 T^{5} - 1141518 T^{6} - 39718360 T^{7} + 582114095 T^{8} - 39718360 p T^{9} - 1141518 p^{2} T^{10} + 396919 p^{3} T^{11} - 14490 p^{4} T^{12} - 3230 p^{5} T^{13} + 540 p^{6} T^{14} - 37 p^{7} T^{15} + p^{8} T^{16} \)
83 \( 1 - 27 T + 327 T^{2} - 4051 T^{3} + 60921 T^{4} - 736952 T^{5} + 7664840 T^{6} - 76449288 T^{7} + 718143749 T^{8} - 76449288 p T^{9} + 7664840 p^{2} T^{10} - 736952 p^{3} T^{11} + 60921 p^{4} T^{12} - 4051 p^{5} T^{13} + 327 p^{6} T^{14} - 27 p^{7} T^{15} + p^{8} T^{16} \)
89 \( ( 1 + 8 T + 254 T^{2} + 1664 T^{3} + 31231 T^{4} + 1664 p T^{5} + 254 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
97 \( 1 - 24 T + 555 T^{2} - 8744 T^{3} + 140724 T^{4} - 1774272 T^{5} + 22382321 T^{6} - 237375808 T^{7} + 2542677991 T^{8} - 237375808 p T^{9} + 22382321 p^{2} T^{10} - 1774272 p^{3} T^{11} + 140724 p^{4} T^{12} - 8744 p^{5} T^{13} + 555 p^{6} T^{14} - 24 p^{7} T^{15} + p^{8} T^{16} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.40963601379384653372287823625, −7.24657486248023277819964278449, −7.04573961343914455254838720674, −6.75492738464691154106956630459, −6.75194129837842569168796799919, −6.58257037796091564409544749849, −6.52183756843724344126252072339, −6.12051626079621319602845311024, −6.06527698036557441781340316570, −5.82002225618961629837001933217, −5.58088528739205081050769755339, −5.55342796449956502906124677934, −5.28116635919281508337924941740, −4.91783809892742614682988910210, −4.77179832299571594616882858543, −4.75197818114324137406326172222, −4.45202187160724167795555229680, −4.03154735665659843412821333460, −3.78937956558104829296424590744, −3.38011110982820984564399557256, −2.92168491018701487635908797969, −2.86878193548490114280889880405, −2.31346873743097894295491064814, −1.67710591377061344305854649629, −1.34817651039807396988066591887, 1.34817651039807396988066591887, 1.67710591377061344305854649629, 2.31346873743097894295491064814, 2.86878193548490114280889880405, 2.92168491018701487635908797969, 3.38011110982820984564399557256, 3.78937956558104829296424590744, 4.03154735665659843412821333460, 4.45202187160724167795555229680, 4.75197818114324137406326172222, 4.77179832299571594616882858543, 4.91783809892742614682988910210, 5.28116635919281508337924941740, 5.55342796449956502906124677934, 5.58088528739205081050769755339, 5.82002225618961629837001933217, 6.06527698036557441781340316570, 6.12051626079621319602845311024, 6.52183756843724344126252072339, 6.58257037796091564409544749849, 6.75194129837842569168796799919, 6.75492738464691154106956630459, 7.04573961343914455254838720674, 7.24657486248023277819964278449, 7.40963601379384653372287823625

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.