Properties

Label 6-547e3-547.546-c2e3-0-0
Degree $6$
Conductor $163667323$
Sign $1$
Analytic cond. $3311.06$
Root an. cond. $3.86065$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 12·4-s + 27·9-s + 96·16-s + 75·25-s + 324·36-s + 147·49-s + 640·64-s + 486·81-s + 900·100-s + 127-s + 131-s + 137-s + 139-s + 2.59e3·144-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 1.76e3·196-s + 197-s + 199-s + ⋯
L(s)  = 1  + 3·4-s + 3·9-s + 6·16-s + 3·25-s + 9·36-s + 3·49-s + 10·64-s + 6·81-s + 9·100-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 18·144-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 9·196-s + 0.00507·197-s + 0.00502·199-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(547^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(547^{3}\right)^{s/2} \, \Gamma_{\C}(s+1)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(547^{3}\)
Sign: $1$
Analytic conductor: \(3311.06\)
Root analytic conductor: \(3.86065\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{547} (546, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 547^{3} ,\ ( \ : 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(15.71602336\)
\(L(\frac12)\) \(\approx\) \(15.71602336\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad547$C_1$ \( ( 1 + p T )^{3} \)
good2$C_1$$\times$$C_1$ \( ( 1 - p T )^{3}( 1 + p T )^{3} \)
3$C_1$$\times$$C_1$ \( ( 1 - p T )^{3}( 1 + p T )^{3} \)
5$C_1$$\times$$C_1$ \( ( 1 - p T )^{3}( 1 + p T )^{3} \)
7$C_1$$\times$$C_1$ \( ( 1 - p T )^{3}( 1 + p T )^{3} \)
11$D_{6}$ \( 1 - 474 T^{3} + p^{6} T^{6} \)
13$D_{6}$ \( 1 + 4358 T^{3} + p^{6} T^{6} \)
17$C_1$$\times$$C_1$ \( ( 1 - p T )^{3}( 1 + p T )^{3} \)
19$D_{6}$ \( 1 + 5974 T^{3} + p^{6} T^{6} \)
23$C_1$$\times$$C_1$ \( ( 1 - p T )^{3}( 1 + p T )^{3} \)
29$D_{6}$ \( 1 - 40026 T^{3} + p^{6} T^{6} \)
31$C_1$$\times$$C_1$ \( ( 1 - p T )^{3}( 1 + p T )^{3} \)
37$C_1$$\times$$C_1$ \( ( 1 - p T )^{3}( 1 + p T )^{3} \)
41$C_1$$\times$$C_1$ \( ( 1 - p T )^{3}( 1 + p T )^{3} \)
43$C_1$$\times$$C_1$ \( ( 1 - p T )^{3}( 1 + p T )^{3} \)
47$D_{6}$ \( 1 + 57102 T^{3} + p^{6} T^{6} \)
53$D_{6}$ \( 1 - 289002 T^{3} + p^{6} T^{6} \)
59$C_1$$\times$$C_1$ \( ( 1 - p T )^{3}( 1 + p T )^{3} \)
61$C_1$$\times$$C_1$ \( ( 1 - p T )^{3}( 1 + p T )^{3} \)
67$D_{6}$ \( 1 + 363382 T^{3} + p^{6} T^{6} \)
71$C_1$$\times$$C_1$ \( ( 1 - p T )^{3}( 1 + p T )^{3} \)
73$D_{6}$ \( 1 - 462962 T^{3} + p^{6} T^{6} \)
79$C_1$$\times$$C_1$ \( ( 1 - p T )^{3}( 1 + p T )^{3} \)
83$C_1$$\times$$C_1$ \( ( 1 - p T )^{3}( 1 + p T )^{3} \)
89$C_1$$\times$$C_1$ \( ( 1 - p T )^{3}( 1 + p T )^{3} \)
97$D_{6}$ \( 1 - 1265218 T^{3} + p^{6} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.769727995935848774830967517245, −9.015700584994313250066262733000, −8.765056203744990769122171382724, −8.659337806684879330641757127344, −7.931137464318274405672144419938, −7.56078683797499917861585537432, −7.46596177983242606053779940563, −7.25580857070273797872079632580, −7.13034977720695553500185836240, −6.62741824993304671830727285447, −6.46471886661242904474601187143, −6.22805564204767418393205385271, −5.96280776225978690011102306678, −5.14943031724711583041757012379, −4.92282029190601306714769922749, −4.91444692951681377133302146445, −3.81995204064117789772822227141, −3.78973971150953595697167912247, −3.65596208128490934707296203806, −2.57196279248095170635693413472, −2.48773918926333368846680989935, −2.46100756500082398882206261707, −1.27754808617544536382403373589, −1.26184553004121869175853389375, −1.22312571509403343849852205344, 1.22312571509403343849852205344, 1.26184553004121869175853389375, 1.27754808617544536382403373589, 2.46100756500082398882206261707, 2.48773918926333368846680989935, 2.57196279248095170635693413472, 3.65596208128490934707296203806, 3.78973971150953595697167912247, 3.81995204064117789772822227141, 4.91444692951681377133302146445, 4.92282029190601306714769922749, 5.14943031724711583041757012379, 5.96280776225978690011102306678, 6.22805564204767418393205385271, 6.46471886661242904474601187143, 6.62741824993304671830727285447, 7.13034977720695553500185836240, 7.25580857070273797872079632580, 7.46596177983242606053779940563, 7.56078683797499917861585537432, 7.931137464318274405672144419938, 8.659337806684879330641757127344, 8.765056203744990769122171382724, 9.015700584994313250066262733000, 9.769727995935848774830967517245

Graph of the $Z$-function along the critical line