Properties

Label 10-546e5-1.1-c7e5-0-0
Degree $10$
Conductor $4.852\times 10^{13}$
Sign $1$
Analytic cond. $1.44349\times 10^{11}$
Root an. cond. $13.0599$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 40·2-s + 135·3-s + 960·4-s + 509·5-s − 5.40e3·6-s − 1.71e3·7-s − 1.79e4·8-s + 1.09e4·9-s − 2.03e4·10-s + 958·11-s + 1.29e5·12-s + 1.09e4·13-s + 6.86e4·14-s + 6.87e4·15-s + 2.86e5·16-s + 7.86e3·17-s − 4.37e5·18-s + 6.01e4·19-s + 4.88e5·20-s − 2.31e5·21-s − 3.83e4·22-s + 1.22e5·23-s − 2.41e6·24-s − 2.89e4·25-s − 4.39e5·26-s + 6.88e5·27-s − 1.64e6·28-s + ⋯
L(s)  = 1  − 3.53·2-s + 2.88·3-s + 15/2·4-s + 1.82·5-s − 10.2·6-s − 1.88·7-s − 12.3·8-s + 5·9-s − 6.43·10-s + 0.217·11-s + 21.6·12-s + 1.38·13-s + 6.68·14-s + 5.25·15-s + 35/2·16-s + 0.388·17-s − 17.6·18-s + 2.01·19-s + 13.6·20-s − 5.45·21-s − 0.767·22-s + 2.10·23-s − 35.7·24-s − 0.370·25-s − 4.90·26-s + 6.73·27-s − 14.1·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{5} \cdot 3^{5} \cdot 7^{5} \cdot 13^{5}\right)^{s/2} \, \Gamma_{\C}(s)^{5} \, L(s)\cr=\mathstrut & \,\Lambda(8-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{5} \cdot 3^{5} \cdot 7^{5} \cdot 13^{5}\right)^{s/2} \, \Gamma_{\C}(s+7/2)^{5} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(10\)
Conductor: \(2^{5} \cdot 3^{5} \cdot 7^{5} \cdot 13^{5}\)
Sign: $1$
Analytic conductor: \(1.44349\times 10^{11}\)
Root analytic conductor: \(13.0599\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((10,\ 2^{5} \cdot 3^{5} \cdot 7^{5} \cdot 13^{5} ,\ ( \ : 7/2, 7/2, 7/2, 7/2, 7/2 ),\ 1 )\)

Particular Values

\(L(4)\) \(\approx\) \(24.79913011\)
\(L(\frac12)\) \(\approx\) \(24.79913011\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + p^{3} T )^{5} \)
3$C_1$ \( ( 1 - p^{3} T )^{5} \)
7$C_1$ \( ( 1 + p^{3} T )^{5} \)
13$C_1$ \( ( 1 - p^{3} T )^{5} \)
good5$C_2 \wr S_5$ \( 1 - 509 T + 287992 T^{2} - 97836451 T^{3} + 6888447231 p T^{4} - 386920863136 p^{2} T^{5} + 6888447231 p^{8} T^{6} - 97836451 p^{14} T^{7} + 287992 p^{21} T^{8} - 509 p^{28} T^{9} + p^{35} T^{10} \)
11$C_2 \wr S_5$ \( 1 - 958 T + 46514310 T^{2} - 3125802102 p T^{3} + 1227776035144841 T^{4} - 2103878293043376 p^{2} T^{5} + 1227776035144841 p^{7} T^{6} - 3125802102 p^{15} T^{7} + 46514310 p^{21} T^{8} - 958 p^{28} T^{9} + p^{35} T^{10} \)
17$C_2 \wr S_5$ \( 1 - 7864 T + 1334922512 T^{2} - 5416571140296 T^{3} + 51052793162792935 p T^{4} - \)\(23\!\cdots\!72\)\( T^{5} + 51052793162792935 p^{8} T^{6} - 5416571140296 p^{14} T^{7} + 1334922512 p^{21} T^{8} - 7864 p^{28} T^{9} + p^{35} T^{10} \)
19$C_2 \wr S_5$ \( 1 - 3167 p T + 4144797478 T^{2} - 179034345968535 T^{3} + 7158028100298253441 T^{4} - \)\(22\!\cdots\!68\)\( T^{5} + 7158028100298253441 p^{7} T^{6} - 179034345968535 p^{14} T^{7} + 4144797478 p^{21} T^{8} - 3167 p^{29} T^{9} + p^{35} T^{10} \)
23$C_2 \wr S_5$ \( 1 - 122869 T + 20771335958 T^{2} - 1636818330993203 T^{3} + \)\(15\!\cdots\!01\)\( T^{4} - \)\(82\!\cdots\!24\)\( T^{5} + \)\(15\!\cdots\!01\)\( p^{7} T^{6} - 1636818330993203 p^{14} T^{7} + 20771335958 p^{21} T^{8} - 122869 p^{28} T^{9} + p^{35} T^{10} \)
29$C_2 \wr S_5$ \( 1 + 17317 T + 50798747632 T^{2} + 2584999675225587 T^{3} + \)\(11\!\cdots\!23\)\( T^{4} + \)\(76\!\cdots\!36\)\( T^{5} + \)\(11\!\cdots\!23\)\( p^{7} T^{6} + 2584999675225587 p^{14} T^{7} + 50798747632 p^{21} T^{8} + 17317 p^{28} T^{9} + p^{35} T^{10} \)
31$C_2 \wr S_5$ \( 1 + 177665 T + 59968078655 T^{2} + 9001111418133340 T^{3} + \)\(21\!\cdots\!66\)\( T^{4} + \)\(20\!\cdots\!42\)\( T^{5} + \)\(21\!\cdots\!66\)\( p^{7} T^{6} + 9001111418133340 p^{14} T^{7} + 59968078655 p^{21} T^{8} + 177665 p^{28} T^{9} + p^{35} T^{10} \)
37$C_2 \wr S_5$ \( 1 + 55136 T + 303778060792 T^{2} + 5363332033782364 T^{3} + \)\(46\!\cdots\!15\)\( T^{4} + \)\(51\!\cdots\!48\)\( T^{5} + \)\(46\!\cdots\!15\)\( p^{7} T^{6} + 5363332033782364 p^{14} T^{7} + 303778060792 p^{21} T^{8} + 55136 p^{28} T^{9} + p^{35} T^{10} \)
41$C_2 \wr S_5$ \( 1 + 237570 T + 515557432769 T^{2} + 196369940614048832 T^{3} + \)\(13\!\cdots\!10\)\( T^{4} + \)\(59\!\cdots\!60\)\( T^{5} + \)\(13\!\cdots\!10\)\( p^{7} T^{6} + 196369940614048832 p^{14} T^{7} + 515557432769 p^{21} T^{8} + 237570 p^{28} T^{9} + p^{35} T^{10} \)
43$C_2 \wr S_5$ \( 1 + 970601 T + 1195111865590 T^{2} + 702743687833631347 T^{3} + \)\(50\!\cdots\!65\)\( T^{4} + \)\(23\!\cdots\!60\)\( T^{5} + \)\(50\!\cdots\!65\)\( p^{7} T^{6} + 702743687833631347 p^{14} T^{7} + 1195111865590 p^{21} T^{8} + 970601 p^{28} T^{9} + p^{35} T^{10} \)
47$C_2 \wr S_5$ \( 1 + 384035 T + 1529042617435 T^{2} + 617198546939589940 T^{3} + \)\(11\!\cdots\!26\)\( T^{4} + \)\(43\!\cdots\!22\)\( T^{5} + \)\(11\!\cdots\!26\)\( p^{7} T^{6} + 617198546939589940 p^{14} T^{7} + 1529042617435 p^{21} T^{8} + 384035 p^{28} T^{9} + p^{35} T^{10} \)
53$C_2 \wr S_5$ \( 1 + 1977 T + 2819181392741 T^{2} - 456715899235884572 T^{3} + \)\(44\!\cdots\!02\)\( T^{4} - \)\(79\!\cdots\!02\)\( T^{5} + \)\(44\!\cdots\!02\)\( p^{7} T^{6} - 456715899235884572 p^{14} T^{7} + 2819181392741 p^{21} T^{8} + 1977 p^{28} T^{9} + p^{35} T^{10} \)
59$C_2 \wr S_5$ \( 1 - 2057936 T + 4864887855599 T^{2} - 4907900100221024832 T^{3} + \)\(15\!\cdots\!62\)\( T^{4} - \)\(19\!\cdots\!72\)\( T^{5} + \)\(15\!\cdots\!62\)\( p^{7} T^{6} - 4907900100221024832 p^{14} T^{7} + 4864887855599 p^{21} T^{8} - 2057936 p^{28} T^{9} + p^{35} T^{10} \)
61$C_2 \wr S_5$ \( 1 + 723756 T + 8116610328538 T^{2} + 10578325797076970314 T^{3} + \)\(37\!\cdots\!09\)\( T^{4} + \)\(46\!\cdots\!84\)\( T^{5} + \)\(37\!\cdots\!09\)\( p^{7} T^{6} + 10578325797076970314 p^{14} T^{7} + 8116610328538 p^{21} T^{8} + 723756 p^{28} T^{9} + p^{35} T^{10} \)
67$C_2 \wr S_5$ \( 1 - 2695018 T + 2784967158803 T^{2} + 3956964041696313872 T^{3} - \)\(15\!\cdots\!62\)\( T^{4} - \)\(12\!\cdots\!00\)\( T^{5} - \)\(15\!\cdots\!62\)\( p^{7} T^{6} + 3956964041696313872 p^{14} T^{7} + 2784967158803 p^{21} T^{8} - 2695018 p^{28} T^{9} + p^{35} T^{10} \)
71$C_2 \wr S_5$ \( 1 - 7392916 T + 61658982486035 T^{2} - \)\(27\!\cdots\!72\)\( T^{3} + \)\(12\!\cdots\!26\)\( T^{4} - \)\(37\!\cdots\!72\)\( T^{5} + \)\(12\!\cdots\!26\)\( p^{7} T^{6} - \)\(27\!\cdots\!72\)\( p^{14} T^{7} + 61658982486035 p^{21} T^{8} - 7392916 p^{28} T^{9} + p^{35} T^{10} \)
73$C_2 \wr S_5$ \( 1 - 8720441 T + 56998817220732 T^{2} - \)\(27\!\cdots\!23\)\( T^{3} + \)\(11\!\cdots\!79\)\( T^{4} - \)\(42\!\cdots\!00\)\( T^{5} + \)\(11\!\cdots\!79\)\( p^{7} T^{6} - \)\(27\!\cdots\!23\)\( p^{14} T^{7} + 56998817220732 p^{21} T^{8} - 8720441 p^{28} T^{9} + p^{35} T^{10} \)
79$C_2 \wr S_5$ \( 1 - 4646419 T + 79466497866523 T^{2} - \)\(36\!\cdots\!12\)\( T^{3} + \)\(27\!\cdots\!06\)\( T^{4} - \)\(10\!\cdots\!38\)\( T^{5} + \)\(27\!\cdots\!06\)\( p^{7} T^{6} - \)\(36\!\cdots\!12\)\( p^{14} T^{7} + 79466497866523 p^{21} T^{8} - 4646419 p^{28} T^{9} + p^{35} T^{10} \)
83$C_2 \wr S_5$ \( 1 - 17766733 T + 179482578636611 T^{2} - \)\(11\!\cdots\!36\)\( T^{3} + \)\(59\!\cdots\!26\)\( T^{4} - \)\(29\!\cdots\!62\)\( T^{5} + \)\(59\!\cdots\!26\)\( p^{7} T^{6} - \)\(11\!\cdots\!36\)\( p^{14} T^{7} + 179482578636611 p^{21} T^{8} - 17766733 p^{28} T^{9} + p^{35} T^{10} \)
89$C_2 \wr S_5$ \( 1 - 4692321 T + 137167117254481 T^{2} - \)\(10\!\cdots\!32\)\( T^{3} + \)\(86\!\cdots\!78\)\( T^{4} - \)\(71\!\cdots\!70\)\( T^{5} + \)\(86\!\cdots\!78\)\( p^{7} T^{6} - \)\(10\!\cdots\!32\)\( p^{14} T^{7} + 137167117254481 p^{21} T^{8} - 4692321 p^{28} T^{9} + p^{35} T^{10} \)
97$C_2 \wr S_5$ \( 1 - 15680305 T + 275561220183217 T^{2} - \)\(21\!\cdots\!80\)\( T^{3} + \)\(22\!\cdots\!54\)\( T^{4} - \)\(12\!\cdots\!26\)\( T^{5} + \)\(22\!\cdots\!54\)\( p^{7} T^{6} - \)\(21\!\cdots\!80\)\( p^{14} T^{7} + 275561220183217 p^{21} T^{8} - 15680305 p^{28} T^{9} + p^{35} T^{10} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{10} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.33192936435813649399017882859, −5.26707762762996238223015351749, −5.25197414379302353944380673993, −5.05694166299398737688176677941, −4.87327000990895932168081053847, −3.79908386190290964149635938415, −3.77492868144901314025507558347, −3.70436329117543321015842921995, −3.70433652388673120088923363840, −3.68417640656809982959224892564, −3.08379247962324099626848097537, −2.77333417597186984436927697719, −2.76548726231080361080068847537, −2.73453201745408098689378228399, −2.60146306805393927797583587509, −1.90638696090712628355102476505, −1.76116268641482602730359084769, −1.75414583377411187577696936221, −1.74372157794805269828999231333, −1.61714450899840030626867943679, −0.948782190190546941993814076256, −0.76477542535796629619860296572, −0.72896784250869987560480705609, −0.56322852487641978707952873896, −0.40261386890436113168653379684, 0.40261386890436113168653379684, 0.56322852487641978707952873896, 0.72896784250869987560480705609, 0.76477542535796629619860296572, 0.948782190190546941993814076256, 1.61714450899840030626867943679, 1.74372157794805269828999231333, 1.75414583377411187577696936221, 1.76116268641482602730359084769, 1.90638696090712628355102476505, 2.60146306805393927797583587509, 2.73453201745408098689378228399, 2.76548726231080361080068847537, 2.77333417597186984436927697719, 3.08379247962324099626848097537, 3.68417640656809982959224892564, 3.70433652388673120088923363840, 3.70436329117543321015842921995, 3.77492868144901314025507558347, 3.79908386190290964149635938415, 4.87327000990895932168081053847, 5.05694166299398737688176677941, 5.25197414379302353944380673993, 5.26707762762996238223015351749, 5.33192936435813649399017882859

Graph of the $Z$-function along the critical line