Properties

Label 8-546e4-1.1-c1e4-0-14
Degree $8$
Conductor $88873149456$
Sign $1$
Analytic cond. $361.309$
Root an. cond. $2.08802$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 4-s + 9-s + 6·11-s − 2·12-s − 4·13-s + 4·17-s + 12·25-s + 2·27-s − 6·29-s − 12·33-s + 36-s + 6·37-s + 8·39-s + 10·43-s + 6·44-s + 49-s − 8·51-s − 4·52-s + 28·53-s + 24·59-s − 64-s + 24·67-s + 4·68-s − 18·71-s − 24·75-s + 36·79-s + ⋯
L(s)  = 1  − 1.15·3-s + 1/2·4-s + 1/3·9-s + 1.80·11-s − 0.577·12-s − 1.10·13-s + 0.970·17-s + 12/5·25-s + 0.384·27-s − 1.11·29-s − 2.08·33-s + 1/6·36-s + 0.986·37-s + 1.28·39-s + 1.52·43-s + 0.904·44-s + 1/7·49-s − 1.12·51-s − 0.554·52-s + 3.84·53-s + 3.12·59-s − 1/8·64-s + 2.93·67-s + 0.485·68-s − 2.13·71-s − 2.77·75-s + 4.05·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 7^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(361.309\)
Root analytic conductor: \(2.08802\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 7^{4} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.616805696\)
\(L(\frac12)\) \(\approx\) \(2.616805696\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 - T^{2} + T^{4} \)
3$C_2$ \( ( 1 + T + T^{2} )^{2} \)
7$C_2^2$ \( 1 - T^{2} + T^{4} \)
13$C_2^2$ \( 1 + 4 T + 3 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
good5$D_4\times C_2$ \( 1 - 12 T^{2} + 74 T^{4} - 12 p^{2} T^{6} + p^{4} T^{8} \)
11$C_2^2$ \( ( 1 - 3 T + 14 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 - 4 T - 19 T^{2} - 4 T^{3} + 664 T^{4} - 4 p T^{5} - 19 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
19$C_2^2$$\times$$C_2^2$ \( ( 1 + 11 T^{2} + p^{2} T^{4} )( 1 + 26 T^{2} + p^{2} T^{4} ) \)
23$C_2^3$ \( 1 - 34 T^{2} + 627 T^{4} - 34 p^{2} T^{6} + p^{4} T^{8} \)
29$D_4\times C_2$ \( 1 + 6 T - 19 T^{2} - 18 T^{3} + 1140 T^{4} - 18 p T^{5} - 19 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
31$D_4\times C_2$ \( 1 - 52 T^{2} + 1626 T^{4} - 52 p^{2} T^{6} + p^{4} T^{8} \)
37$D_4\times C_2$ \( 1 - 6 T + 64 T^{2} - 312 T^{3} + 1779 T^{4} - 312 p T^{5} + 64 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} \)
41$C_2^3$ \( 1 + 73 T^{2} + 3648 T^{4} + 73 p^{2} T^{6} + p^{4} T^{8} \)
43$D_4\times C_2$ \( 1 - 10 T - 8 T^{2} - 220 T^{3} + 5515 T^{4} - 220 p T^{5} - 8 p^{2} T^{6} - 10 p^{3} T^{7} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 - 162 T^{2} + 10931 T^{4} - 162 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2$ \( ( 1 - 7 T + p T^{2} )^{4} \)
59$D_4\times C_2$ \( 1 - 24 T + 322 T^{2} - 3120 T^{3} + 24747 T^{4} - 3120 p T^{5} + 322 p^{2} T^{6} - 24 p^{3} T^{7} + p^{4} T^{8} \)
61$C_2^3$ \( 1 - 95 T^{2} + 5304 T^{4} - 95 p^{2} T^{6} + p^{4} T^{8} \)
67$D_4\times C_2$ \( 1 - 24 T + 370 T^{2} - 4272 T^{3} + 40059 T^{4} - 4272 p T^{5} + 370 p^{2} T^{6} - 24 p^{3} T^{7} + p^{4} T^{8} \)
71$D_4\times C_2$ \( 1 + 18 T + 268 T^{2} + 2880 T^{3} + 28227 T^{4} + 2880 p T^{5} + 268 p^{2} T^{6} + 18 p^{3} T^{7} + p^{4} T^{8} \)
73$D_4\times C_2$ \( 1 - 260 T^{2} + 27366 T^{4} - 260 p^{2} T^{6} + p^{4} T^{8} \)
79$D_{4}$ \( ( 1 - 18 T + 191 T^{2} - 18 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 228 T^{2} + 24074 T^{4} - 228 p^{2} T^{6} + p^{4} T^{8} \)
89$D_4\times C_2$ \( 1 + 12 T + 189 T^{2} + 1692 T^{3} + 16232 T^{4} + 1692 p T^{5} + 189 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \)
97$D_4\times C_2$ \( 1 - 30 T + 520 T^{2} - 6600 T^{3} + 68091 T^{4} - 6600 p T^{5} + 520 p^{2} T^{6} - 30 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.63007045552729697840034658127, −7.45635512146812402965429340057, −7.15873600195455352732704127888, −7.10126081181171939598290360546, −6.71584660343762529423453692116, −6.68203388395863159604548408452, −6.37243157379974201728589590801, −6.25984439166830131523684117458, −5.62999760687918158943046215073, −5.58688539823967146130806279628, −5.38567503252472026963338892338, −5.30416635511018551316427233145, −4.84680772879350861158005950088, −4.59782195039248035992870956019, −4.14794305922382447816013905362, −4.00716912079894669915291008645, −3.75889200576746739129227270549, −3.46838720640047242092413157342, −3.02685845403989968944866945151, −2.51575865112634419861401295750, −2.32096330944653758915800400891, −2.20003898206132195160429842786, −1.29360346199130214710424497254, −0.926301273700834640319346484287, −0.76537748525508855933771343786, 0.76537748525508855933771343786, 0.926301273700834640319346484287, 1.29360346199130214710424497254, 2.20003898206132195160429842786, 2.32096330944653758915800400891, 2.51575865112634419861401295750, 3.02685845403989968944866945151, 3.46838720640047242092413157342, 3.75889200576746739129227270549, 4.00716912079894669915291008645, 4.14794305922382447816013905362, 4.59782195039248035992870956019, 4.84680772879350861158005950088, 5.30416635511018551316427233145, 5.38567503252472026963338892338, 5.58688539823967146130806279628, 5.62999760687918158943046215073, 6.25984439166830131523684117458, 6.37243157379974201728589590801, 6.68203388395863159604548408452, 6.71584660343762529423453692116, 7.10126081181171939598290360546, 7.15873600195455352732704127888, 7.45635512146812402965429340057, 7.63007045552729697840034658127

Graph of the $Z$-function along the critical line