Properties

Label 8-546e4-1.1-c1e4-0-16
Degree $8$
Conductor $88873149456$
Sign $1$
Analytic cond. $361.309$
Root an. cond. $2.08802$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 2·3-s + 4-s + 2·5-s + 4·6-s − 2·7-s + 2·8-s + 9-s − 4·10-s + 8·11-s − 2·12-s + 14·13-s + 4·14-s − 4·15-s − 4·16-s − 6·17-s − 2·18-s + 2·19-s + 2·20-s + 4·21-s − 16·22-s + 3·23-s − 4·24-s + 11·25-s − 28·26-s + 2·27-s − 2·28-s + ⋯
L(s)  = 1  − 1.41·2-s − 1.15·3-s + 1/2·4-s + 0.894·5-s + 1.63·6-s − 0.755·7-s + 0.707·8-s + 1/3·9-s − 1.26·10-s + 2.41·11-s − 0.577·12-s + 3.88·13-s + 1.06·14-s − 1.03·15-s − 16-s − 1.45·17-s − 0.471·18-s + 0.458·19-s + 0.447·20-s + 0.872·21-s − 3.41·22-s + 0.625·23-s − 0.816·24-s + 11/5·25-s − 5.49·26-s + 0.384·27-s − 0.377·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 7^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(361.309\)
Root analytic conductor: \(2.08802\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 7^{4} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.421146971\)
\(L(\frac12)\) \(\approx\) \(1.421146971\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T + T^{2} )^{2} \)
3$C_2$ \( ( 1 + T + T^{2} )^{2} \)
7$C_2$ \( ( 1 + T + T^{2} )^{2} \)
13$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
good5$C_2^2$ \( ( 1 - T - 4 T^{2} - p T^{3} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 4 T + 5 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 + 3 T - 8 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
19$D_4\times C_2$ \( 1 - 2 T + 22 T^{2} + 112 T^{3} - 113 T^{4} + 112 p T^{5} + 22 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
23$D_4\times C_2$ \( 1 - 3 T - 25 T^{2} + 36 T^{3} + 420 T^{4} + 36 p T^{5} - 25 p^{2} T^{6} - 3 p^{3} T^{7} + p^{4} T^{8} \)
29$D_4\times C_2$ \( 1 + 9 T + 17 T^{2} + 54 T^{3} + 906 T^{4} + 54 p T^{5} + 17 p^{2} T^{6} + 9 p^{3} T^{7} + p^{4} T^{8} \)
31$D_{4}$ \( ( 1 - 5 T + 54 T^{2} - 5 p T^{3} + p^{2} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 7 T - 23 T^{2} + 14 T^{3} + 2002 T^{4} + 14 p T^{5} - 23 p^{2} T^{6} - 7 p^{3} T^{7} + p^{4} T^{8} \)
41$D_4\times C_2$ \( 1 + 9 T - 7 T^{2} + 54 T^{3} + 2742 T^{4} + 54 p T^{5} - 7 p^{2} T^{6} + 9 p^{3} T^{7} + p^{4} T^{8} \)
43$C_2$$\times$$C_2^2$ \( ( 1 - T + p T^{2} )^{2}( 1 + T - 42 T^{2} + p T^{3} + p^{2} T^{4} ) \)
47$D_{4}$ \( ( 1 - 2 T + 38 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
53$D_{4}$ \( ( 1 - 8 T + 65 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 - T + 11 T^{2} + 128 T^{3} - 3440 T^{4} + 128 p T^{5} + 11 p^{2} T^{6} - p^{3} T^{7} + p^{4} T^{8} \)
61$C_2^2$ \( ( 1 - 9 T + 20 T^{2} - 9 p T^{3} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 13 T + 7 T^{2} - 364 T^{3} + 10432 T^{4} - 364 p T^{5} + 7 p^{2} T^{6} - 13 p^{3} T^{7} + p^{4} T^{8} \)
71$D_4\times C_2$ \( 1 + 3 T - 121 T^{2} - 36 T^{3} + 11220 T^{4} - 36 p T^{5} - 121 p^{2} T^{6} + 3 p^{3} T^{7} + p^{4} T^{8} \)
73$D_{4}$ \( ( 1 - 19 T + 222 T^{2} - 19 p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{4} \)
83$D_{4}$ \( ( 1 + T + 38 T^{2} + p T^{3} + p^{2} T^{4} )^{2} \)
89$D_4\times C_2$ \( 1 + 9 T - 103 T^{2} + 54 T^{3} + 18726 T^{4} + 54 p T^{5} - 103 p^{2} T^{6} + 9 p^{3} T^{7} + p^{4} T^{8} \)
97$D_4\times C_2$ \( 1 + 14 T + 10 T^{2} - 112 T^{3} + 6175 T^{4} - 112 p T^{5} + 10 p^{2} T^{6} + 14 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.144325962756864746498641701013, −7.38474402246854313751929396183, −7.23973489423363799615641590840, −6.93684760129807240353044800478, −6.78993651485837534191489007827, −6.42328422609142078290890984412, −6.39246210159131191168886133129, −6.36180696536628095206601972150, −6.09921726721841033672921502160, −5.53192785511085364996752855248, −5.42282855183347354190328533060, −5.39608951024021244020050534097, −4.79920863205867065813416041662, −4.55626558573150551997766725923, −3.99861042369625814833989955675, −3.91698530874514036110549935709, −3.80605076785381613302840167360, −3.58636921122831018395502785470, −2.90541959188312581433680185504, −2.68899801264906544670085670522, −2.12285541535609941235298984318, −1.62184992632624417131358898284, −1.20874050595958855215314506543, −0.972198847389114395569722339515, −0.77980177529961547556015709261, 0.77980177529961547556015709261, 0.972198847389114395569722339515, 1.20874050595958855215314506543, 1.62184992632624417131358898284, 2.12285541535609941235298984318, 2.68899801264906544670085670522, 2.90541959188312581433680185504, 3.58636921122831018395502785470, 3.80605076785381613302840167360, 3.91698530874514036110549935709, 3.99861042369625814833989955675, 4.55626558573150551997766725923, 4.79920863205867065813416041662, 5.39608951024021244020050534097, 5.42282855183347354190328533060, 5.53192785511085364996752855248, 6.09921726721841033672921502160, 6.36180696536628095206601972150, 6.39246210159131191168886133129, 6.42328422609142078290890984412, 6.78993651485837534191489007827, 6.93684760129807240353044800478, 7.23973489423363799615641590840, 7.38474402246854313751929396183, 8.144325962756864746498641701013

Graph of the $Z$-function along the critical line