| L(s) = 1 | + (−0.965 − 0.258i)2-s + i·3-s + (0.866 + 0.499i)4-s + (3.74 − 1.00i)5-s + (0.258 − 0.965i)6-s + (−2.20 + 1.46i)7-s + (−0.707 − 0.707i)8-s − 9-s − 3.87·10-s + (3.02 + 3.02i)11-s + (−0.499 + 0.866i)12-s + (3.26 − 1.52i)13-s + (2.50 − 0.842i)14-s + (1.00 + 3.74i)15-s + (0.500 + 0.866i)16-s + (0.792 − 1.37i)17-s + ⋯ |
| L(s) = 1 | + (−0.683 − 0.183i)2-s + 0.577i·3-s + (0.433 + 0.249i)4-s + (1.67 − 0.448i)5-s + (0.105 − 0.394i)6-s + (−0.833 + 0.552i)7-s + (−0.249 − 0.249i)8-s − 0.333·9-s − 1.22·10-s + (0.912 + 0.912i)11-s + (−0.144 + 0.249i)12-s + (0.906 − 0.422i)13-s + (0.670 − 0.225i)14-s + (0.258 + 0.965i)15-s + (0.125 + 0.216i)16-s + (0.192 − 0.332i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.828 - 0.560i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.828 - 0.560i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.30444 + 0.399639i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.30444 + 0.399639i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.965 + 0.258i)T \) |
| 3 | \( 1 - iT \) |
| 7 | \( 1 + (2.20 - 1.46i)T \) |
| 13 | \( 1 + (-3.26 + 1.52i)T \) |
| good | 5 | \( 1 + (-3.74 + 1.00i)T + (4.33 - 2.5i)T^{2} \) |
| 11 | \( 1 + (-3.02 - 3.02i)T + 11iT^{2} \) |
| 17 | \( 1 + (-0.792 + 1.37i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.254 - 0.254i)T + 19iT^{2} \) |
| 23 | \( 1 + (6.12 - 3.53i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (2.17 - 3.75i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.968 + 3.61i)T + (-26.8 - 15.5i)T^{2} \) |
| 37 | \( 1 + (0.503 - 1.87i)T + (-32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (-5.14 + 1.37i)T + (35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (-7.57 + 4.37i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.515 - 1.92i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (-4.42 - 7.65i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.31 - 8.63i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 - 5.95iT - 61T^{2} \) |
| 67 | \( 1 + (8.80 - 8.80i)T - 67iT^{2} \) |
| 71 | \( 1 + (-4.41 - 1.18i)T + (61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (8.88 + 2.37i)T + (63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (-8.16 + 14.1i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (9.65 + 9.65i)T + 83iT^{2} \) |
| 89 | \( 1 + (15.8 + 4.23i)T + (77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (-2.68 + 10.0i)T + (-84.0 - 48.5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.39195741561793776819320756950, −9.933081481544470120644845304015, −9.173989382757973530752369395326, −8.840081556137859609272172533515, −7.28841370203332451439874235987, −6.01324992482185432688254221578, −5.72673735794336553856094578687, −4.11359335915345672795773886957, −2.71111899945907890719634228736, −1.52063937768578222345626463112,
1.15087705370901328751023106816, 2.36804056047761592893894605096, 3.71511214340520746780092713133, 5.80480917412817420146015179767, 6.29322367223921518477357899530, 6.79936862122437688025675834535, 8.139879459915223957165603764754, 9.112973982313971342989926037290, 9.720848095004138465782979384741, 10.56934626188806975476788029533