| L(s) = 1 | + (−1.08 − 0.906i)2-s + (0.0709 − 0.0709i)3-s + (0.356 + 1.96i)4-s + 4.13i·5-s + (−0.141 + 0.0127i)6-s + (−1.05 − 0.436i)7-s + (1.39 − 2.45i)8-s + 2.98i·9-s + (3.74 − 4.49i)10-s + (−1.46 − 1.46i)11-s + (0.164 + 0.114i)12-s + (0.796 − 1.92i)13-s + (0.747 + 1.42i)14-s + (0.293 + 0.293i)15-s + (−3.74 + 1.40i)16-s + (3.59 + 2.02i)17-s + ⋯ |
| L(s) = 1 | + (−0.767 − 0.640i)2-s + (0.0409 − 0.0409i)3-s + (0.178 + 0.983i)4-s + 1.84i·5-s + (−0.0577 + 0.00519i)6-s + (−0.397 − 0.164i)7-s + (0.493 − 0.869i)8-s + 0.996i·9-s + (1.18 − 1.42i)10-s + (−0.443 − 0.443i)11-s + (0.0476 + 0.0330i)12-s + (0.220 − 0.533i)13-s + (0.199 + 0.381i)14-s + (0.0758 + 0.0758i)15-s + (−0.936 + 0.351i)16-s + (0.870 + 0.491i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 544 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.539 - 0.841i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 544 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.539 - 0.841i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.276696 + 0.506100i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.276696 + 0.506100i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (1.08 + 0.906i)T \) |
| 17 | \( 1 + (-3.59 - 2.02i)T \) |
| good | 3 | \( 1 + (-0.0709 + 0.0709i)T - 3iT^{2} \) |
| 5 | \( 1 - 4.13iT - 5T^{2} \) |
| 7 | \( 1 + (1.05 + 0.436i)T + (4.94 + 4.94i)T^{2} \) |
| 11 | \( 1 + (1.46 + 1.46i)T + 11iT^{2} \) |
| 13 | \( 1 + (-0.796 + 1.92i)T + (-9.19 - 9.19i)T^{2} \) |
| 19 | \( 1 + (4.64 - 1.92i)T + (13.4 - 13.4i)T^{2} \) |
| 23 | \( 1 + (4.14 + 1.71i)T + (16.2 + 16.2i)T^{2} \) |
| 29 | \( 1 + (0.0567 + 0.0567i)T + 29iT^{2} \) |
| 31 | \( 1 + (8.68 + 3.59i)T + (21.9 + 21.9i)T^{2} \) |
| 37 | \( 1 - 9.83T + 37T^{2} \) |
| 41 | \( 1 + (3.38 - 8.18i)T + (-28.9 - 28.9i)T^{2} \) |
| 43 | \( 1 + (3.21 - 7.75i)T + (-30.4 - 30.4i)T^{2} \) |
| 47 | \( 1 + 0.385T + 47T^{2} \) |
| 53 | \( 1 + (3.84 + 1.59i)T + (37.4 + 37.4i)T^{2} \) |
| 59 | \( 1 + (-11.8 - 4.91i)T + (41.7 + 41.7i)T^{2} \) |
| 61 | \( 1 - 6.02T + 61T^{2} \) |
| 67 | \( 1 + (2.58 - 6.22i)T + (-47.3 - 47.3i)T^{2} \) |
| 71 | \( 1 + (-14.5 + 6.02i)T + (50.2 - 50.2i)T^{2} \) |
| 73 | \( 1 + (7.59 - 3.14i)T + (51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (-2.10 - 5.08i)T + (-55.8 + 55.8i)T^{2} \) |
| 83 | \( 1 + (-0.109 + 0.0451i)T + (58.6 - 58.6i)T^{2} \) |
| 89 | \( 1 + (3.36 + 3.36i)T + 89iT^{2} \) |
| 97 | \( 1 + (2.64 - 6.37i)T + (-68.5 - 68.5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.99464839670256233894386730789, −10.21467285056729831510044459559, −9.865092386644100801428776717359, −8.125039370978561504008651442495, −7.86881201071856331790041512386, −6.75533108698545751046198724328, −5.87949021402420776354606780778, −3.92831374026437403369645783294, −3.02877420516455444114882683299, −2.12549833815613483894613431815,
0.41053071379874840595605524370, 1.82696845464491953018993848130, 3.99911640025453358715112921135, 5.11080183395015025837663072892, 5.87330578069516566307004629723, 6.97089090226525957997117681503, 8.053630994905929626935384926300, 8.837273806868116173184629602929, 9.385724025483838332838901370098, 10.02005337391671940309622641055