L(s) = 1 | + 2-s − 2·7-s − 8-s − 3·11-s − 2·13-s − 2·14-s − 16-s + 6·17-s − 2·19-s − 3·22-s − 6·23-s + 5·25-s − 2·26-s + 6·29-s + 4·31-s + 6·34-s − 8·37-s − 2·38-s + 9·41-s + 43-s − 6·46-s − 6·47-s + 7·49-s + 5·50-s − 24·53-s + 2·56-s + 6·58-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.755·7-s − 0.353·8-s − 0.904·11-s − 0.554·13-s − 0.534·14-s − 1/4·16-s + 1.45·17-s − 0.458·19-s − 0.639·22-s − 1.25·23-s + 25-s − 0.392·26-s + 1.11·29-s + 0.718·31-s + 1.02·34-s − 1.31·37-s − 0.324·38-s + 1.40·41-s + 0.152·43-s − 0.884·46-s − 0.875·47-s + 49-s + 0.707·50-s − 3.29·53-s + 0.267·56-s + 0.787·58-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2916 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2916 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8715328686\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8715328686\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.59861712213794375411483361128, −15.12688103669667857937205546939, −14.27482924604470976704252044001, −14.09692654269574911820876482947, −13.51017109175237931670563352488, −12.65616926729159557398117926597, −12.33645744571137792579080469536, −12.17511820172585237543301203042, −10.91361990419339911954793543618, −10.57427835288387395140515205717, −9.644156657279471627612142445110, −9.517129125896991291576106911816, −8.109217585919713043018362675136, −8.035203487704401873263663516929, −6.82058941932479782202029435549, −6.24346619468319563425589462519, −5.35381362714877193537420366400, −4.71102187921828010545904359307, −3.57176631322221135410380789907, −2.69831856592917915664558595168,
2.69831856592917915664558595168, 3.57176631322221135410380789907, 4.71102187921828010545904359307, 5.35381362714877193537420366400, 6.24346619468319563425589462519, 6.82058941932479782202029435549, 8.035203487704401873263663516929, 8.109217585919713043018362675136, 9.517129125896991291576106911816, 9.644156657279471627612142445110, 10.57427835288387395140515205717, 10.91361990419339911954793543618, 12.17511820172585237543301203042, 12.33645744571137792579080469536, 12.65616926729159557398117926597, 13.51017109175237931670563352488, 14.09692654269574911820876482947, 14.27482924604470976704252044001, 15.12688103669667857937205546939, 15.59861712213794375411483361128