Properties

Label 2-539-77.25-c1-0-23
Degree $2$
Conductor $539$
Sign $0.661 + 0.750i$
Analytic cond. $4.30393$
Root an. cond. $2.07459$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.81 + 0.807i)2-s + (−2.72 − 0.579i)3-s + (1.29 + 1.44i)4-s + (0.00281 − 0.0267i)5-s + (−4.47 − 3.25i)6-s + (−0.0378 − 0.116i)8-s + (4.35 + 1.93i)9-s + (0.0267 − 0.0462i)10-s + (−1.92 − 2.70i)11-s + (−2.70 − 4.67i)12-s + (3.94 − 2.86i)13-s + (−0.0231 + 0.0713i)15-s + (0.430 − 4.09i)16-s + (1.53 − 0.682i)17-s + (6.32 + 7.02i)18-s + (0.919 − 1.02i)19-s + ⋯
L(s)  = 1  + (1.28 + 0.570i)2-s + (−1.57 − 0.334i)3-s + (0.648 + 0.720i)4-s + (0.00125 − 0.0119i)5-s + (−1.82 − 1.32i)6-s + (−0.0133 − 0.0411i)8-s + (1.45 + 0.645i)9-s + (0.00844 − 0.0146i)10-s + (−0.580 − 0.814i)11-s + (−0.779 − 1.35i)12-s + (1.09 − 0.795i)13-s + (−0.00598 + 0.0184i)15-s + (0.107 − 1.02i)16-s + (0.371 − 0.165i)17-s + (1.49 + 1.65i)18-s + (0.210 − 0.234i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.661 + 0.750i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.661 + 0.750i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(539\)    =    \(7^{2} \cdot 11\)
Sign: $0.661 + 0.750i$
Analytic conductor: \(4.30393\)
Root analytic conductor: \(2.07459\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{539} (410, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 539,\ (\ :1/2),\ 0.661 + 0.750i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.36685 - 0.617402i\)
\(L(\frac12)\) \(\approx\) \(1.36685 - 0.617402i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
11 \( 1 + (1.92 + 2.70i)T \)
good2 \( 1 + (-1.81 - 0.807i)T + (1.33 + 1.48i)T^{2} \)
3 \( 1 + (2.72 + 0.579i)T + (2.74 + 1.22i)T^{2} \)
5 \( 1 + (-0.00281 + 0.0267i)T + (-4.89 - 1.03i)T^{2} \)
13 \( 1 + (-3.94 + 2.86i)T + (4.01 - 12.3i)T^{2} \)
17 \( 1 + (-1.53 + 0.682i)T + (11.3 - 12.6i)T^{2} \)
19 \( 1 + (-0.919 + 1.02i)T + (-1.98 - 18.8i)T^{2} \)
23 \( 1 + (4.03 + 6.98i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (1.97 - 6.08i)T + (-23.4 - 17.0i)T^{2} \)
31 \( 1 + (0.419 + 3.98i)T + (-30.3 + 6.44i)T^{2} \)
37 \( 1 + (0.509 - 0.108i)T + (33.8 - 15.0i)T^{2} \)
41 \( 1 + (3.27 + 10.0i)T + (-33.1 + 24.0i)T^{2} \)
43 \( 1 - 3.73T + 43T^{2} \)
47 \( 1 + (5.99 - 6.65i)T + (-4.91 - 46.7i)T^{2} \)
53 \( 1 + (-0.413 - 3.93i)T + (-51.8 + 11.0i)T^{2} \)
59 \( 1 + (-6.51 - 7.23i)T + (-6.16 + 58.6i)T^{2} \)
61 \( 1 + (0.885 - 8.42i)T + (-59.6 - 12.6i)T^{2} \)
67 \( 1 + (1.40 - 2.43i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (1.65 + 1.20i)T + (21.9 + 67.5i)T^{2} \)
73 \( 1 + (7.00 + 7.78i)T + (-7.63 + 72.6i)T^{2} \)
79 \( 1 + (-5.34 - 2.38i)T + (52.8 + 58.7i)T^{2} \)
83 \( 1 + (2.10 + 1.53i)T + (25.6 + 78.9i)T^{2} \)
89 \( 1 + (0.608 + 1.05i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (2.74 - 1.99i)T + (29.9 - 92.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.85318342133323070624388023628, −10.36842212217457356011544678842, −8.737465309778850875164920703303, −7.51802321384192402645607735042, −6.60826528373520314593096738459, −5.81243943791190422373154387146, −5.43115228230780720107993886144, −4.39476449619103404869431108459, −3.13685905868091186642525105743, −0.73787918437469468031915299044, 1.71369584774846693126420016989, 3.49954048578668250964117966540, 4.43599662099414200350112060309, 5.21137821201298914987659885898, 5.95100508266939729699937549669, 6.77338796711444336386564230166, 8.173861786177206964842143515792, 9.689020614244475209305679485984, 10.43489185058907183113965096536, 11.40214324767793964990358488415

Graph of the $Z$-function along the critical line