Properties

Label 2-539-77.16-c1-0-3
Degree $2$
Conductor $539$
Sign $-0.932 + 0.361i$
Analytic cond. $4.30393$
Root an. cond. $2.07459$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.655 − 0.139i)2-s + (−0.328 + 3.12i)3-s + (−1.41 − 0.631i)4-s + (1.43 + 1.59i)5-s + (0.649 − 1.99i)6-s + (1.92 + 1.39i)8-s + (−6.70 − 1.42i)9-s + (−0.717 − 1.24i)10-s + (−2.17 + 2.50i)11-s + (2.43 − 4.21i)12-s + (0.781 + 2.40i)13-s + (−5.44 + 3.95i)15-s + (1.01 + 1.12i)16-s + (1.75 − 0.372i)17-s + (4.19 + 1.86i)18-s + (−6.14 + 2.73i)19-s + ⋯
L(s)  = 1  + (−0.463 − 0.0984i)2-s + (−0.189 + 1.80i)3-s + (−0.708 − 0.315i)4-s + (0.641 + 0.712i)5-s + (0.265 − 0.816i)6-s + (0.680 + 0.494i)8-s + (−2.23 − 0.475i)9-s + (−0.227 − 0.393i)10-s + (−0.654 + 0.755i)11-s + (0.703 − 1.21i)12-s + (0.216 + 0.666i)13-s + (−1.40 + 1.02i)15-s + (0.252 + 0.280i)16-s + (0.424 − 0.0903i)17-s + (0.989 + 0.440i)18-s + (−1.40 + 0.627i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.932 + 0.361i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.932 + 0.361i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(539\)    =    \(7^{2} \cdot 11\)
Sign: $-0.932 + 0.361i$
Analytic conductor: \(4.30393\)
Root analytic conductor: \(2.07459\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{539} (324, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 539,\ (\ :1/2),\ -0.932 + 0.361i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.111123 - 0.593757i\)
\(L(\frac12)\) \(\approx\) \(0.111123 - 0.593757i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
11 \( 1 + (2.17 - 2.50i)T \)
good2 \( 1 + (0.655 + 0.139i)T + (1.82 + 0.813i)T^{2} \)
3 \( 1 + (0.328 - 3.12i)T + (-2.93 - 0.623i)T^{2} \)
5 \( 1 + (-1.43 - 1.59i)T + (-0.522 + 4.97i)T^{2} \)
13 \( 1 + (-0.781 - 2.40i)T + (-10.5 + 7.64i)T^{2} \)
17 \( 1 + (-1.75 + 0.372i)T + (15.5 - 6.91i)T^{2} \)
19 \( 1 + (6.14 - 2.73i)T + (12.7 - 14.1i)T^{2} \)
23 \( 1 + (-1.58 + 2.74i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (-0.747 + 0.543i)T + (8.96 - 27.5i)T^{2} \)
31 \( 1 + (-2.00 + 2.23i)T + (-3.24 - 30.8i)T^{2} \)
37 \( 1 + (-0.157 - 1.49i)T + (-36.1 + 7.69i)T^{2} \)
41 \( 1 + (4.49 + 3.26i)T + (12.6 + 38.9i)T^{2} \)
43 \( 1 + 8.42T + 43T^{2} \)
47 \( 1 + (-4.01 + 1.78i)T + (31.4 - 34.9i)T^{2} \)
53 \( 1 + (-0.446 + 0.495i)T + (-5.54 - 52.7i)T^{2} \)
59 \( 1 + (0.336 + 0.149i)T + (39.4 + 43.8i)T^{2} \)
61 \( 1 + (-3.35 - 3.72i)T + (-6.37 + 60.6i)T^{2} \)
67 \( 1 + (-0.451 - 0.781i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + (4.59 - 14.1i)T + (-57.4 - 41.7i)T^{2} \)
73 \( 1 + (-7.34 - 3.26i)T + (48.8 + 54.2i)T^{2} \)
79 \( 1 + (3.96 + 0.843i)T + (72.1 + 32.1i)T^{2} \)
83 \( 1 + (1.25 - 3.85i)T + (-67.1 - 48.7i)T^{2} \)
89 \( 1 + (-4.15 + 7.19i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (-2.63 - 8.09i)T + (-78.4 + 57.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.68239386857611500604066131241, −10.28166688713340668549612081020, −9.863411701884657277916970007960, −8.955568186376148941999309132779, −8.217687554191503240794066564259, −6.55922905606401224083586083418, −5.52059967374488067792400447307, −4.67466903213176242914540919056, −3.87388440339643147659989829127, −2.35569101935183654755598603593, 0.43103363036431054212740090490, 1.59036915609469085152462147978, 3.09502057901833817033797532393, 4.99091652245044006582172669227, 5.80686363753515550230990344022, 6.81074399612211307282126588243, 7.84979544018300667563901372175, 8.397125466103870643908998877793, 9.040746656553725733165270466987, 10.29992925018456100126429406161

Graph of the $Z$-function along the critical line