Properties

Label 4-539e2-1.1-c1e2-0-4
Degree $4$
Conductor $290521$
Sign $1$
Analytic cond. $18.5238$
Root an. cond. $2.07459$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 4-s + 4·5-s + 2·9-s − 2·11-s − 2·12-s − 2·13-s − 8·15-s − 3·16-s + 2·17-s − 4·19-s + 4·20-s − 4·23-s + 2·25-s − 6·27-s + 8·29-s + 10·31-s + 4·33-s + 2·36-s − 8·37-s + 4·39-s + 18·41-s + 16·43-s − 2·44-s + 8·45-s − 10·47-s + 6·48-s + ⋯
L(s)  = 1  − 1.15·3-s + 1/2·4-s + 1.78·5-s + 2/3·9-s − 0.603·11-s − 0.577·12-s − 0.554·13-s − 2.06·15-s − 3/4·16-s + 0.485·17-s − 0.917·19-s + 0.894·20-s − 0.834·23-s + 2/5·25-s − 1.15·27-s + 1.48·29-s + 1.79·31-s + 0.696·33-s + 1/3·36-s − 1.31·37-s + 0.640·39-s + 2.81·41-s + 2.43·43-s − 0.301·44-s + 1.19·45-s − 1.45·47-s + 0.866·48-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 290521 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 290521 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(290521\)    =    \(7^{4} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(18.5238\)
Root analytic conductor: \(2.07459\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 290521,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.606863429\)
\(L(\frac12)\) \(\approx\) \(1.606863429\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad7 \( 1 \)
11$C_1$ \( ( 1 + T )^{2} \)
good2$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
3$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
5$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
13$D_{4}$ \( 1 + 2 T + 22 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 - 2 T + 30 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 + 4 T + 22 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 + 4 T + 30 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
29$C_4$ \( 1 - 8 T + 54 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 - 10 T + 82 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + 8 T + 70 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 - 18 T + 158 T^{2} - 18 p T^{3} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
47$D_{4}$ \( 1 + 10 T + 114 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - 8 T + 102 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 2 T + 114 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 - 10 T + 142 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - 20 T + 214 T^{2} - 20 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 12 T + 158 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 6 T + 150 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
79$C_2^2$ \( 1 + 78 T^{2} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 4 T - 10 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
97$D_{4}$ \( 1 + 8 T + 30 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.96537080075096561677003009513, −10.62488177703540135650348344723, −10.03522080405151530595692497139, −9.987651779959547751517389905091, −9.472926087534246252774508044574, −9.063174999709150314402136304462, −8.147663586618887641096158432684, −8.075258193869289737435894639904, −7.18424524510303540791015816359, −6.85927092204615940985358372739, −6.26454448036419840097745758653, −5.94113032611647041502513696057, −5.69073997891943019562563874218, −5.19122582593861883092161953530, −4.44982373744121376579929552492, −4.14186486690873075288704673450, −2.87901426576957832639051345580, −2.26615973375245716475657042143, −2.02151533514478628667616299223, −0.77902122701161020743563112113, 0.77902122701161020743563112113, 2.02151533514478628667616299223, 2.26615973375245716475657042143, 2.87901426576957832639051345580, 4.14186486690873075288704673450, 4.44982373744121376579929552492, 5.19122582593861883092161953530, 5.69073997891943019562563874218, 5.94113032611647041502513696057, 6.26454448036419840097745758653, 6.85927092204615940985358372739, 7.18424524510303540791015816359, 8.075258193869289737435894639904, 8.147663586618887641096158432684, 9.063174999709150314402136304462, 9.472926087534246252774508044574, 9.987651779959547751517389905091, 10.03522080405151530595692497139, 10.62488177703540135650348344723, 10.96537080075096561677003009513

Graph of the $Z$-function along the critical line