Properties

Label 2-531-1.1-c7-0-139
Degree $2$
Conductor $531$
Sign $-1$
Analytic cond. $165.876$
Root an. cond. $12.8793$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.80·2-s − 113.·4-s + 87.8·5-s + 1.30e3·7-s + 918.·8-s − 334.·10-s + 3.79e3·11-s + 8.97e3·13-s − 4.96e3·14-s + 1.10e4·16-s + 4.35e3·17-s − 5.70e4·19-s − 9.97e3·20-s − 1.44e4·22-s − 9.66e4·23-s − 7.04e4·25-s − 3.41e4·26-s − 1.48e5·28-s − 2.27e4·29-s − 5.33e4·31-s − 1.59e5·32-s − 1.65e4·34-s + 1.14e5·35-s + 3.19e5·37-s + 2.16e5·38-s + 8.06e4·40-s − 4.76e5·41-s + ⋯
L(s)  = 1  − 0.335·2-s − 0.887·4-s + 0.314·5-s + 1.43·7-s + 0.634·8-s − 0.105·10-s + 0.860·11-s + 1.13·13-s − 0.483·14-s + 0.674·16-s + 0.215·17-s − 1.90·19-s − 0.278·20-s − 0.289·22-s − 1.65·23-s − 0.901·25-s − 0.380·26-s − 1.27·28-s − 0.173·29-s − 0.321·31-s − 0.860·32-s − 0.0722·34-s + 0.452·35-s + 1.03·37-s + 0.641·38-s + 0.199·40-s − 1.07·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 531 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 531 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(531\)    =    \(3^{2} \cdot 59\)
Sign: $-1$
Analytic conductor: \(165.876\)
Root analytic conductor: \(12.8793\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 531,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
59 \( 1 + 2.05e5T \)
good2 \( 1 + 3.80T + 128T^{2} \)
5 \( 1 - 87.8T + 7.81e4T^{2} \)
7 \( 1 - 1.30e3T + 8.23e5T^{2} \)
11 \( 1 - 3.79e3T + 1.94e7T^{2} \)
13 \( 1 - 8.97e3T + 6.27e7T^{2} \)
17 \( 1 - 4.35e3T + 4.10e8T^{2} \)
19 \( 1 + 5.70e4T + 8.93e8T^{2} \)
23 \( 1 + 9.66e4T + 3.40e9T^{2} \)
29 \( 1 + 2.27e4T + 1.72e10T^{2} \)
31 \( 1 + 5.33e4T + 2.75e10T^{2} \)
37 \( 1 - 3.19e5T + 9.49e10T^{2} \)
41 \( 1 + 4.76e5T + 1.94e11T^{2} \)
43 \( 1 - 7.07e5T + 2.71e11T^{2} \)
47 \( 1 + 9.46e5T + 5.06e11T^{2} \)
53 \( 1 + 7.99e5T + 1.17e12T^{2} \)
61 \( 1 - 5.39e5T + 3.14e12T^{2} \)
67 \( 1 - 2.90e6T + 6.06e12T^{2} \)
71 \( 1 - 5.23e5T + 9.09e12T^{2} \)
73 \( 1 + 2.11e6T + 1.10e13T^{2} \)
79 \( 1 + 3.80e6T + 1.92e13T^{2} \)
83 \( 1 + 1.88e6T + 2.71e13T^{2} \)
89 \( 1 + 6.48e6T + 4.42e13T^{2} \)
97 \( 1 - 2.84e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.148873113272458967773301166210, −8.301318660625430610665317559528, −7.954906429548558492891459344461, −6.41206902750295032617697141532, −5.57055926268638615424541198206, −4.35098127754875021726199330078, −3.92250065552567072656372178894, −1.94754094802717651718478351101, −1.32091955371630412625160031632, 0, 1.32091955371630412625160031632, 1.94754094802717651718478351101, 3.92250065552567072656372178894, 4.35098127754875021726199330078, 5.57055926268638615424541198206, 6.41206902750295032617697141532, 7.954906429548558492891459344461, 8.301318660625430610665317559528, 9.148873113272458967773301166210

Graph of the $Z$-function along the critical line