Properties

Label 2-531-1.1-c5-0-56
Degree $2$
Conductor $531$
Sign $-1$
Analytic cond. $85.1638$
Root an. cond. $9.22842$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7.32·2-s + 21.6·4-s − 46.7·5-s − 85.8·7-s + 75.6·8-s + 342.·10-s + 408.·11-s + 27.9·13-s + 628.·14-s − 1.24e3·16-s − 1.58e3·17-s − 2.20e3·19-s − 1.01e3·20-s − 2.99e3·22-s + 3.96e3·23-s − 936.·25-s − 204.·26-s − 1.85e3·28-s + 2.90e3·29-s + 4.85e3·31-s + 6.72e3·32-s + 1.16e4·34-s + 4.01e3·35-s + 2.83e3·37-s + 1.61e4·38-s − 3.54e3·40-s − 3.69e3·41-s + ⋯
L(s)  = 1  − 1.29·2-s + 0.677·4-s − 0.836·5-s − 0.661·7-s + 0.418·8-s + 1.08·10-s + 1.01·11-s + 0.0458·13-s + 0.857·14-s − 1.21·16-s − 1.33·17-s − 1.40·19-s − 0.566·20-s − 1.31·22-s + 1.56·23-s − 0.299·25-s − 0.0593·26-s − 0.448·28-s + 0.641·29-s + 0.907·31-s + 1.16·32-s + 1.72·34-s + 0.553·35-s + 0.340·37-s + 1.81·38-s − 0.349·40-s − 0.343·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 531 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 531 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(531\)    =    \(3^{2} \cdot 59\)
Sign: $-1$
Analytic conductor: \(85.1638\)
Root analytic conductor: \(9.22842\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 531,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
59 \( 1 - 3.48e3T \)
good2 \( 1 + 7.32T + 32T^{2} \)
5 \( 1 + 46.7T + 3.12e3T^{2} \)
7 \( 1 + 85.8T + 1.68e4T^{2} \)
11 \( 1 - 408.T + 1.61e5T^{2} \)
13 \( 1 - 27.9T + 3.71e5T^{2} \)
17 \( 1 + 1.58e3T + 1.41e6T^{2} \)
19 \( 1 + 2.20e3T + 2.47e6T^{2} \)
23 \( 1 - 3.96e3T + 6.43e6T^{2} \)
29 \( 1 - 2.90e3T + 2.05e7T^{2} \)
31 \( 1 - 4.85e3T + 2.86e7T^{2} \)
37 \( 1 - 2.83e3T + 6.93e7T^{2} \)
41 \( 1 + 3.69e3T + 1.15e8T^{2} \)
43 \( 1 + 8.79e3T + 1.47e8T^{2} \)
47 \( 1 - 2.10e4T + 2.29e8T^{2} \)
53 \( 1 - 1.10e4T + 4.18e8T^{2} \)
61 \( 1 - 4.53e4T + 8.44e8T^{2} \)
67 \( 1 + 4.08e4T + 1.35e9T^{2} \)
71 \( 1 - 2.70e4T + 1.80e9T^{2} \)
73 \( 1 - 7.04e4T + 2.07e9T^{2} \)
79 \( 1 - 7.16e4T + 3.07e9T^{2} \)
83 \( 1 + 9.32e4T + 3.93e9T^{2} \)
89 \( 1 - 1.16e5T + 5.58e9T^{2} \)
97 \( 1 - 9.11e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.387801609123183811193861986725, −8.781020081016162505461535099029, −8.118084361176529759498791846412, −6.90593002436644704585021461430, −6.52724286557562609545017224877, −4.66335582784147849833706784030, −3.83310631182914901065666579024, −2.35300663628110779469252510704, −0.953186654439709059536946736539, 0, 0.953186654439709059536946736539, 2.35300663628110779469252510704, 3.83310631182914901065666579024, 4.66335582784147849833706784030, 6.52724286557562609545017224877, 6.90593002436644704585021461430, 8.118084361176529759498791846412, 8.781020081016162505461535099029, 9.387801609123183811193861986725

Graph of the $Z$-function along the critical line