Properties

Label 2-531-1.1-c5-0-63
Degree $2$
Conductor $531$
Sign $-1$
Analytic cond. $85.1638$
Root an. cond. $9.22842$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.290·2-s − 31.9·4-s − 87.1·5-s + 167.·7-s + 18.5·8-s + 25.2·10-s − 252.·11-s − 289.·13-s − 48.6·14-s + 1.01e3·16-s + 227.·17-s − 1.16e3·19-s + 2.78e3·20-s + 73.3·22-s + 1.23e3·23-s + 4.46e3·25-s + 83.9·26-s − 5.34e3·28-s − 1.97e3·29-s + 7.79e3·31-s − 888.·32-s − 66.0·34-s − 1.45e4·35-s + 7.04e3·37-s + 337.·38-s − 1.61e3·40-s + 1.12e4·41-s + ⋯
L(s)  = 1  − 0.0512·2-s − 0.997·4-s − 1.55·5-s + 1.29·7-s + 0.102·8-s + 0.0799·10-s − 0.629·11-s − 0.474·13-s − 0.0662·14-s + 0.992·16-s + 0.190·17-s − 0.738·19-s + 1.55·20-s + 0.0323·22-s + 0.485·23-s + 1.42·25-s + 0.0243·26-s − 1.28·28-s − 0.436·29-s + 1.45·31-s − 0.153·32-s − 0.00979·34-s − 2.01·35-s + 0.846·37-s + 0.0378·38-s − 0.159·40-s + 1.04·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 531 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 531 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(531\)    =    \(3^{2} \cdot 59\)
Sign: $-1$
Analytic conductor: \(85.1638\)
Root analytic conductor: \(9.22842\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 531,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
59 \( 1 - 3.48e3T \)
good2 \( 1 + 0.290T + 32T^{2} \)
5 \( 1 + 87.1T + 3.12e3T^{2} \)
7 \( 1 - 167.T + 1.68e4T^{2} \)
11 \( 1 + 252.T + 1.61e5T^{2} \)
13 \( 1 + 289.T + 3.71e5T^{2} \)
17 \( 1 - 227.T + 1.41e6T^{2} \)
19 \( 1 + 1.16e3T + 2.47e6T^{2} \)
23 \( 1 - 1.23e3T + 6.43e6T^{2} \)
29 \( 1 + 1.97e3T + 2.05e7T^{2} \)
31 \( 1 - 7.79e3T + 2.86e7T^{2} \)
37 \( 1 - 7.04e3T + 6.93e7T^{2} \)
41 \( 1 - 1.12e4T + 1.15e8T^{2} \)
43 \( 1 - 1.85e4T + 1.47e8T^{2} \)
47 \( 1 - 2.01e4T + 2.29e8T^{2} \)
53 \( 1 + 3.73e4T + 4.18e8T^{2} \)
61 \( 1 + 998.T + 8.44e8T^{2} \)
67 \( 1 + 1.96e4T + 1.35e9T^{2} \)
71 \( 1 + 2.16e4T + 1.80e9T^{2} \)
73 \( 1 - 4.62e4T + 2.07e9T^{2} \)
79 \( 1 + 8.50e4T + 3.07e9T^{2} \)
83 \( 1 + 7.54e4T + 3.93e9T^{2} \)
89 \( 1 + 1.05e5T + 5.58e9T^{2} \)
97 \( 1 + 1.09e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.487260310552506616437280253843, −8.420872060903026312620766217756, −7.988536091709854798540370951363, −7.31970192761850733180645689252, −5.62473746941829503503219095790, −4.49158535815168912254335794121, −4.27689684902541750773050951459, −2.79705537698350487369587978975, −1.04222603964101307501305782262, 0, 1.04222603964101307501305782262, 2.79705537698350487369587978975, 4.27689684902541750773050951459, 4.49158535815168912254335794121, 5.62473746941829503503219095790, 7.31970192761850733180645689252, 7.988536091709854798540370951363, 8.420872060903026312620766217756, 9.487260310552506616437280253843

Graph of the $Z$-function along the critical line