Properties

Label 2-531-1.1-c3-0-17
Degree $2$
Conductor $531$
Sign $1$
Analytic cond. $31.3300$
Root an. cond. $5.59732$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.67·2-s − 5.20·4-s + 6.76·5-s − 19.0·7-s − 22.0·8-s + 11.3·10-s + 65.4·11-s − 46.8·13-s − 31.8·14-s + 4.65·16-s − 48.0·17-s + 147.·19-s − 35.1·20-s + 109.·22-s − 33.1·23-s − 79.2·25-s − 78.4·26-s + 99.0·28-s + 73.6·29-s + 142.·31-s + 184.·32-s − 80.3·34-s − 128.·35-s + 397.·37-s + 246.·38-s − 149.·40-s + 100.·41-s + ⋯
L(s)  = 1  + 0.591·2-s − 0.650·4-s + 0.604·5-s − 1.02·7-s − 0.976·8-s + 0.357·10-s + 1.79·11-s − 1.00·13-s − 0.608·14-s + 0.0727·16-s − 0.685·17-s + 1.77·19-s − 0.393·20-s + 1.06·22-s − 0.300·23-s − 0.634·25-s − 0.591·26-s + 0.668·28-s + 0.471·29-s + 0.825·31-s + 1.01·32-s − 0.405·34-s − 0.622·35-s + 1.76·37-s + 1.05·38-s − 0.590·40-s + 0.383·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 531 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 531 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(531\)    =    \(3^{2} \cdot 59\)
Sign: $1$
Analytic conductor: \(31.3300\)
Root analytic conductor: \(5.59732\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 531,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.150819541\)
\(L(\frac12)\) \(\approx\) \(2.150819541\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
59 \( 1 - 59T \)
good2 \( 1 - 1.67T + 8T^{2} \)
5 \( 1 - 6.76T + 125T^{2} \)
7 \( 1 + 19.0T + 343T^{2} \)
11 \( 1 - 65.4T + 1.33e3T^{2} \)
13 \( 1 + 46.8T + 2.19e3T^{2} \)
17 \( 1 + 48.0T + 4.91e3T^{2} \)
19 \( 1 - 147.T + 6.85e3T^{2} \)
23 \( 1 + 33.1T + 1.21e4T^{2} \)
29 \( 1 - 73.6T + 2.43e4T^{2} \)
31 \( 1 - 142.T + 2.97e4T^{2} \)
37 \( 1 - 397.T + 5.06e4T^{2} \)
41 \( 1 - 100.T + 6.89e4T^{2} \)
43 \( 1 - 388.T + 7.95e4T^{2} \)
47 \( 1 - 138.T + 1.03e5T^{2} \)
53 \( 1 - 439.T + 1.48e5T^{2} \)
61 \( 1 + 602.T + 2.26e5T^{2} \)
67 \( 1 + 154.T + 3.00e5T^{2} \)
71 \( 1 + 552.T + 3.57e5T^{2} \)
73 \( 1 + 107.T + 3.89e5T^{2} \)
79 \( 1 - 989.T + 4.93e5T^{2} \)
83 \( 1 - 730.T + 5.71e5T^{2} \)
89 \( 1 - 1.37e3T + 7.04e5T^{2} \)
97 \( 1 + 268.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.11811465325516696879513065527, −9.315855696728170898915829820670, −9.231415810337668905458344786594, −7.60735525799027211874402465432, −6.43914459523953649937623979140, −5.88375424629756848082864921235, −4.65650460576071578368958439411, −3.76399456335873750030427595255, −2.65612977154581900770117854470, −0.839625452778731815183279660024, 0.839625452778731815183279660024, 2.65612977154581900770117854470, 3.76399456335873750030427595255, 4.65650460576071578368958439411, 5.88375424629756848082864921235, 6.43914459523953649937623979140, 7.60735525799027211874402465432, 9.231415810337668905458344786594, 9.315855696728170898915829820670, 10.11811465325516696879513065527

Graph of the $Z$-function along the critical line