Properties

Label 2-531-1.1-c3-0-10
Degree $2$
Conductor $531$
Sign $1$
Analytic cond. $31.3300$
Root an. cond. $5.59732$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.77·2-s − 4.84·4-s − 6.23·5-s − 18.0·7-s − 22.8·8-s − 11.0·10-s − 13.3·11-s − 66.3·13-s − 32.0·14-s − 1.68·16-s + 97.6·17-s + 109.·19-s + 30.2·20-s − 23.6·22-s + 147.·23-s − 86.1·25-s − 117.·26-s + 87.6·28-s + 173.·29-s + 148.·31-s + 179.·32-s + 173.·34-s + 112.·35-s − 446.·37-s + 194.·38-s + 142.·40-s − 182.·41-s + ⋯
L(s)  = 1  + 0.627·2-s − 0.606·4-s − 0.557·5-s − 0.976·7-s − 1.00·8-s − 0.349·10-s − 0.365·11-s − 1.41·13-s − 0.612·14-s − 0.0263·16-s + 1.39·17-s + 1.32·19-s + 0.337·20-s − 0.229·22-s + 1.33·23-s − 0.689·25-s − 0.888·26-s + 0.591·28-s + 1.11·29-s + 0.861·31-s + 0.991·32-s + 0.874·34-s + 0.543·35-s − 1.98·37-s + 0.831·38-s + 0.561·40-s − 0.696·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 531 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 531 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(531\)    =    \(3^{2} \cdot 59\)
Sign: $1$
Analytic conductor: \(31.3300\)
Root analytic conductor: \(5.59732\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 531,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.262217989\)
\(L(\frac12)\) \(\approx\) \(1.262217989\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
59 \( 1 - 59T \)
good2 \( 1 - 1.77T + 8T^{2} \)
5 \( 1 + 6.23T + 125T^{2} \)
7 \( 1 + 18.0T + 343T^{2} \)
11 \( 1 + 13.3T + 1.33e3T^{2} \)
13 \( 1 + 66.3T + 2.19e3T^{2} \)
17 \( 1 - 97.6T + 4.91e3T^{2} \)
19 \( 1 - 109.T + 6.85e3T^{2} \)
23 \( 1 - 147.T + 1.21e4T^{2} \)
29 \( 1 - 173.T + 2.43e4T^{2} \)
31 \( 1 - 148.T + 2.97e4T^{2} \)
37 \( 1 + 446.T + 5.06e4T^{2} \)
41 \( 1 + 182.T + 6.89e4T^{2} \)
43 \( 1 + 223.T + 7.95e4T^{2} \)
47 \( 1 - 529.T + 1.03e5T^{2} \)
53 \( 1 + 398.T + 1.48e5T^{2} \)
61 \( 1 - 788.T + 2.26e5T^{2} \)
67 \( 1 - 288.T + 3.00e5T^{2} \)
71 \( 1 - 139.T + 3.57e5T^{2} \)
73 \( 1 - 549.T + 3.89e5T^{2} \)
79 \( 1 + 190.T + 4.93e5T^{2} \)
83 \( 1 + 410.T + 5.71e5T^{2} \)
89 \( 1 + 1.29e3T + 7.04e5T^{2} \)
97 \( 1 - 1.48e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.06954740644597920896380562926, −9.804179742545653684968030250921, −8.682991808017173537797694870207, −7.64841538747482001893949858717, −6.78366770378598595476287520961, −5.45050005453073178728837061333, −4.88913238547670250810259248802, −3.52688132693943775866802579484, −2.93823707358891865357203822279, −0.61240722302548474968595519646, 0.61240722302548474968595519646, 2.93823707358891865357203822279, 3.52688132693943775866802579484, 4.88913238547670250810259248802, 5.45050005453073178728837061333, 6.78366770378598595476287520961, 7.64841538747482001893949858717, 8.682991808017173537797694870207, 9.804179742545653684968030250921, 10.06954740644597920896380562926

Graph of the $Z$-function along the critical line