Properties

Label 6-531e3-1.1-c1e3-0-0
Degree $6$
Conductor $149721291$
Sign $1$
Analytic cond. $76.2280$
Root an. cond. $2.05913$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 2·5-s + 9·7-s − 8-s + 2·11-s + 4·13-s − 3·17-s + 7·19-s − 4·20-s − 23-s − 6·25-s − 18·28-s + 11·29-s + 13·31-s + 4·32-s + 18·35-s − 5·37-s − 2·40-s + 41-s + 6·43-s − 4·44-s − 11·47-s + 37·49-s − 8·52-s − 2·53-s + 4·55-s − 9·56-s + ⋯
L(s)  = 1  − 4-s + 0.894·5-s + 3.40·7-s − 0.353·8-s + 0.603·11-s + 1.10·13-s − 0.727·17-s + 1.60·19-s − 0.894·20-s − 0.208·23-s − 6/5·25-s − 3.40·28-s + 2.04·29-s + 2.33·31-s + 0.707·32-s + 3.04·35-s − 0.821·37-s − 0.316·40-s + 0.156·41-s + 0.914·43-s − 0.603·44-s − 1.60·47-s + 37/7·49-s − 1.10·52-s − 0.274·53-s + 0.539·55-s − 1.20·56-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{6} \cdot 59^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{6} \cdot 59^{3}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(3^{6} \cdot 59^{3}\)
Sign: $1$
Analytic conductor: \(76.2280\)
Root analytic conductor: \(2.05913\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 3^{6} \cdot 59^{3} ,\ ( \ : 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(3.836616661\)
\(L(\frac12)\) \(\approx\) \(3.836616661\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
59$C_1$ \( ( 1 + T )^{3} \)
good2$S_4\times C_2$ \( 1 + p T^{2} + T^{3} + p^{2} T^{4} + p^{3} T^{6} \)
5$S_4\times C_2$ \( 1 - 2 T + 2 p T^{2} - 18 T^{3} + 2 p^{2} T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \)
7$S_4\times C_2$ \( 1 - 9 T + 44 T^{2} - 142 T^{3} + 44 p T^{4} - 9 p^{2} T^{5} + p^{3} T^{6} \)
11$S_4\times C_2$ \( 1 - 2 T + 2 p T^{2} - 48 T^{3} + 2 p^{2} T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \)
13$S_4\times C_2$ \( 1 - 4 T + 32 T^{2} - 6 p T^{3} + 32 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} \)
17$S_4\times C_2$ \( 1 + 3 T + 8 T^{2} + 4 T^{3} + 8 p T^{4} + 3 p^{2} T^{5} + p^{3} T^{6} \)
19$S_4\times C_2$ \( 1 - 7 T + 68 T^{2} - 270 T^{3} + 68 p T^{4} - 7 p^{2} T^{5} + p^{3} T^{6} \)
23$S_4\times C_2$ \( 1 + T + 42 T^{2} - 18 T^{3} + 42 p T^{4} + p^{2} T^{5} + p^{3} T^{6} \)
29$S_4\times C_2$ \( 1 - 11 T + 96 T^{2} - 564 T^{3} + 96 p T^{4} - 11 p^{2} T^{5} + p^{3} T^{6} \)
31$S_4\times C_2$ \( 1 - 13 T + 130 T^{2} - 778 T^{3} + 130 p T^{4} - 13 p^{2} T^{5} + p^{3} T^{6} \)
37$S_4\times C_2$ \( 1 + 5 T + 92 T^{2} + 384 T^{3} + 92 p T^{4} + 5 p^{2} T^{5} + p^{3} T^{6} \)
41$S_4\times C_2$ \( 1 - T + 84 T^{2} - 156 T^{3} + 84 p T^{4} - p^{2} T^{5} + p^{3} T^{6} \)
43$S_4\times C_2$ \( 1 - 6 T + 38 T^{2} + 76 T^{3} + 38 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
47$S_4\times C_2$ \( 1 + 11 T + 104 T^{2} + 538 T^{3} + 104 p T^{4} + 11 p^{2} T^{5} + p^{3} T^{6} \)
53$S_4\times C_2$ \( 1 + 2 T + 70 T^{2} + 270 T^{3} + 70 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \)
61$S_4\times C_2$ \( 1 + T + 82 T^{2} + 220 T^{3} + 82 p T^{4} + p^{2} T^{5} + p^{3} T^{6} \)
67$S_4\times C_2$ \( 1 - 10 T + 82 T^{2} - 556 T^{3} + 82 p T^{4} - 10 p^{2} T^{5} + p^{3} T^{6} \)
71$S_4\times C_2$ \( 1 + 26 T + 406 T^{2} + 4116 T^{3} + 406 p T^{4} + 26 p^{2} T^{5} + p^{3} T^{6} \)
73$S_4\times C_2$ \( 1 - 7 T + 78 T^{2} - 304 T^{3} + 78 p T^{4} - 7 p^{2} T^{5} + p^{3} T^{6} \)
79$S_4\times C_2$ \( 1 - 2 T + 206 T^{2} - 348 T^{3} + 206 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \)
83$S_4\times C_2$ \( 1 - 3 T + 50 T^{2} - 350 T^{3} + 50 p T^{4} - 3 p^{2} T^{5} + p^{3} T^{6} \)
89$S_4\times C_2$ \( 1 - 23 T + 358 T^{2} - 3816 T^{3} + 358 p T^{4} - 23 p^{2} T^{5} + p^{3} T^{6} \)
97$S_4\times C_2$ \( 1 - 14 T + 266 T^{2} - 2514 T^{3} + 266 p T^{4} - 14 p^{2} T^{5} + p^{3} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.812301984096908176127672789655, −9.159480497709874481609430298033, −8.952125711390761157900536425738, −8.928695111012322781156302266931, −8.379624904921779683492917801739, −8.234828292545763839450003928229, −7.941630945067703886910291904675, −7.77571667724881359329528129032, −7.48809770104953254392174709930, −6.73762326160572739707433437090, −6.51180290175362163669858722021, −6.22334770174103380489192177401, −5.94736659642020166049637041038, −5.20678390383459871958552350532, −5.12249661926270967887039006728, −5.10416370913007519013257111007, −4.40904498867961525995302014919, −4.23734790304655394953437010350, −4.16840493084790723037648916596, −3.21423241276739828873088532527, −2.95921522121758916556389057452, −2.14803695002667900798065678134, −1.88245306324936485300213913762, −1.21382042280888650694757769281, −1.08101838136937823762257877625, 1.08101838136937823762257877625, 1.21382042280888650694757769281, 1.88245306324936485300213913762, 2.14803695002667900798065678134, 2.95921522121758916556389057452, 3.21423241276739828873088532527, 4.16840493084790723037648916596, 4.23734790304655394953437010350, 4.40904498867961525995302014919, 5.10416370913007519013257111007, 5.12249661926270967887039006728, 5.20678390383459871958552350532, 5.94736659642020166049637041038, 6.22334770174103380489192177401, 6.51180290175362163669858722021, 6.73762326160572739707433437090, 7.48809770104953254392174709930, 7.77571667724881359329528129032, 7.941630945067703886910291904675, 8.234828292545763839450003928229, 8.379624904921779683492917801739, 8.928695111012322781156302266931, 8.952125711390761157900536425738, 9.159480497709874481609430298033, 9.812301984096908176127672789655

Graph of the $Z$-function along the critical line