Properties

Label 6-5292e3-1.1-c1e3-0-2
Degree $6$
Conductor $148203857088$
Sign $-1$
Analytic cond. $75455.4$
Root an. cond. $6.50052$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $3$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 5·11-s − 2·13-s + 4·17-s + 3·19-s − 14·23-s − 2·25-s + 5·29-s − 2·31-s − 12·41-s − 9·43-s + 9·47-s − 6·53-s + 5·55-s + 5·59-s + 7·61-s + 2·65-s − 16·67-s − 11·71-s − 73-s − 8·79-s − 17·83-s − 4·85-s + 3·89-s − 3·95-s + 14·97-s + 29·101-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.50·11-s − 0.554·13-s + 0.970·17-s + 0.688·19-s − 2.91·23-s − 2/5·25-s + 0.928·29-s − 0.359·31-s − 1.87·41-s − 1.37·43-s + 1.31·47-s − 0.824·53-s + 0.674·55-s + 0.650·59-s + 0.896·61-s + 0.248·65-s − 1.95·67-s − 1.30·71-s − 0.117·73-s − 0.900·79-s − 1.86·83-s − 0.433·85-s + 0.317·89-s − 0.307·95-s + 1.42·97-s + 2.88·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{6} \cdot 3^{9} \cdot 7^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{6} \cdot 3^{9} \cdot 7^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(2^{6} \cdot 3^{9} \cdot 7^{6}\)
Sign: $-1$
Analytic conductor: \(75455.4\)
Root analytic conductor: \(6.50052\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(3\)
Selberg data: \((6,\ 2^{6} \cdot 3^{9} \cdot 7^{6} ,\ ( \ : 1/2, 1/2, 1/2 ),\ -1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5$S_4\times C_2$ \( 1 + T + 3 T^{2} + 19 T^{3} + 3 p T^{4} + p^{2} T^{5} + p^{3} T^{6} \)
11$S_4\times C_2$ \( 1 + 5 T + 21 T^{2} + 47 T^{3} + 21 p T^{4} + 5 p^{2} T^{5} + p^{3} T^{6} \)
13$S_4\times C_2$ \( 1 + 2 T + 28 T^{2} + 31 T^{3} + 28 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \)
17$S_4\times C_2$ \( 1 - 4 T + 36 T^{2} - 145 T^{3} + 36 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} \)
19$S_4\times C_2$ \( 1 - 3 T + 21 T^{2} - 65 T^{3} + 21 p T^{4} - 3 p^{2} T^{5} + p^{3} T^{6} \)
23$S_4\times C_2$ \( 1 + 14 T + 108 T^{2} + 581 T^{3} + 108 p T^{4} + 14 p^{2} T^{5} + p^{3} T^{6} \)
29$S_4\times C_2$ \( 1 - 5 T + 75 T^{2} - 227 T^{3} + 75 p T^{4} - 5 p^{2} T^{5} + p^{3} T^{6} \)
31$S_4\times C_2$ \( 1 + 2 T + 82 T^{2} + 103 T^{3} + 82 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \)
37$S_4\times C_2$ \( 1 + 54 T^{2} - 137 T^{3} + 54 p T^{4} + p^{3} T^{6} \)
41$S_4\times C_2$ \( 1 + 12 T + 132 T^{2} + 903 T^{3} + 132 p T^{4} + 12 p^{2} T^{5} + p^{3} T^{6} \)
43$S_4\times C_2$ \( 1 + 9 T + 99 T^{2} + 493 T^{3} + 99 p T^{4} + 9 p^{2} T^{5} + p^{3} T^{6} \)
47$S_4\times C_2$ \( 1 - 9 T + 87 T^{2} - 603 T^{3} + 87 p T^{4} - 9 p^{2} T^{5} + p^{3} T^{6} \)
53$S_4\times C_2$ \( 1 + 6 T + 60 T^{2} + 69 T^{3} + 60 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \)
59$S_4\times C_2$ \( 1 - 5 T + 159 T^{2} - 509 T^{3} + 159 p T^{4} - 5 p^{2} T^{5} + p^{3} T^{6} \)
61$S_4\times C_2$ \( 1 - 7 T + 94 T^{2} - 287 T^{3} + 94 p T^{4} - 7 p^{2} T^{5} + p^{3} T^{6} \)
67$S_4\times C_2$ \( 1 + 16 T + 260 T^{2} + 2197 T^{3} + 260 p T^{4} + 16 p^{2} T^{5} + p^{3} T^{6} \)
71$S_4\times C_2$ \( 1 + 11 T + 141 T^{2} + 1373 T^{3} + 141 p T^{4} + 11 p^{2} T^{5} + p^{3} T^{6} \)
73$S_4\times C_2$ \( 1 + T + 137 T^{2} + 307 T^{3} + 137 p T^{4} + p^{2} T^{5} + p^{3} T^{6} \)
79$S_4\times C_2$ \( 1 + 8 T + 82 T^{2} + 391 T^{3} + 82 p T^{4} + 8 p^{2} T^{5} + p^{3} T^{6} \)
83$S_4\times C_2$ \( 1 + 17 T + 333 T^{2} + 2921 T^{3} + 333 p T^{4} + 17 p^{2} T^{5} + p^{3} T^{6} \)
89$S_4\times C_2$ \( 1 - 3 T + 42 T^{2} + 789 T^{3} + 42 p T^{4} - 3 p^{2} T^{5} + p^{3} T^{6} \)
97$S_4\times C_2$ \( 1 - 14 T + 251 T^{2} - 2660 T^{3} + 251 p T^{4} - 14 p^{2} T^{5} + p^{3} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.62745228813986881036240842941, −7.32516021429745462083159740903, −7.32419797786376529636340303125, −7.02512164304191333972797560873, −6.57410113715227257780263447972, −6.38302547442017877522158622667, −6.19493488319327953721802739545, −5.72810912513948336841552031241, −5.72327104311223751082166002486, −5.51707339873581468924384529957, −4.99399887334386100527941359003, −4.96238606197840698588569645860, −4.84920111685029984362614098339, −4.33974472449841863927900632222, −3.96955609806610687673505544811, −3.93504768854164924720256039757, −3.49149298479971412092632625351, −3.44138472961130754778480494350, −2.87075250750224091041316154275, −2.61290690353787990078751944375, −2.54413535985168282813361707824, −2.15377442946030206787119381951, −1.54954925435835195863304725043, −1.48065578480195045887138610000, −1.07492244614541847376880068682, 0, 0, 0, 1.07492244614541847376880068682, 1.48065578480195045887138610000, 1.54954925435835195863304725043, 2.15377442946030206787119381951, 2.54413535985168282813361707824, 2.61290690353787990078751944375, 2.87075250750224091041316154275, 3.44138472961130754778480494350, 3.49149298479971412092632625351, 3.93504768854164924720256039757, 3.96955609806610687673505544811, 4.33974472449841863927900632222, 4.84920111685029984362614098339, 4.96238606197840698588569645860, 4.99399887334386100527941359003, 5.51707339873581468924384529957, 5.72327104311223751082166002486, 5.72810912513948336841552031241, 6.19493488319327953721802739545, 6.38302547442017877522158622667, 6.57410113715227257780263447972, 7.02512164304191333972797560873, 7.32419797786376529636340303125, 7.32516021429745462083159740903, 7.62745228813986881036240842941

Graph of the $Z$-function along the critical line