Properties

Label 8-525e4-1.1-c3e4-0-9
Degree $8$
Conductor $75969140625$
Sign $1$
Analytic cond. $920664.$
Root an. cond. $5.56560$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $4$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 12·3-s − 8·4-s − 28·7-s − 3·8-s + 90·9-s + 21·11-s + 96·12-s − 5·13-s + 18·16-s − 99·17-s + 72·19-s + 336·21-s − 102·23-s + 36·24-s − 540·27-s + 224·28-s − 240·29-s + 351·31-s + 24·32-s − 252·33-s − 720·36-s − 399·37-s + 60·39-s + 381·41-s − 460·43-s − 168·44-s − 60·47-s + ⋯
L(s)  = 1  − 2.30·3-s − 4-s − 1.51·7-s − 0.132·8-s + 10/3·9-s + 0.575·11-s + 2.30·12-s − 0.106·13-s + 9/32·16-s − 1.41·17-s + 0.869·19-s + 3.49·21-s − 0.924·23-s + 0.306·24-s − 3.84·27-s + 1.51·28-s − 1.53·29-s + 2.03·31-s + 0.132·32-s − 1.32·33-s − 3.33·36-s − 1.77·37-s + 0.246·39-s + 1.45·41-s − 1.63·43-s − 0.575·44-s − 0.186·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 5^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(920664.\)
Root analytic conductor: \(5.56560\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(4\)
Selberg data: \((8,\ 3^{4} \cdot 5^{8} \cdot 7^{4} ,\ ( \ : 3/2, 3/2, 3/2, 3/2 ),\ 1 )\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 + p T )^{4} \)
5 \( 1 \)
7$C_1$ \( ( 1 + p T )^{4} \)
good2$C_2 \wr S_4$ \( 1 + p^{3} T^{2} + 3 T^{3} + 23 p T^{4} + 3 p^{3} T^{5} + p^{9} T^{6} + p^{12} T^{8} \)
11$C_2 \wr S_4$ \( 1 - 21 T + 2681 T^{2} - 22236 T^{3} + 3289690 T^{4} - 22236 p^{3} T^{5} + 2681 p^{6} T^{6} - 21 p^{9} T^{7} + p^{12} T^{8} \)
13$C_2 \wr S_4$ \( 1 + 5 T + 1848 T^{2} - 69653 T^{3} - 988138 T^{4} - 69653 p^{3} T^{5} + 1848 p^{6} T^{6} + 5 p^{9} T^{7} + p^{12} T^{8} \)
17$C_2 \wr S_4$ \( 1 + 99 T + 13298 T^{2} + 508917 T^{3} + 56706418 T^{4} + 508917 p^{3} T^{5} + 13298 p^{6} T^{6} + 99 p^{9} T^{7} + p^{12} T^{8} \)
19$C_2 \wr S_4$ \( 1 - 72 T + 25164 T^{2} - 1424592 T^{3} + 252125750 T^{4} - 1424592 p^{3} T^{5} + 25164 p^{6} T^{6} - 72 p^{9} T^{7} + p^{12} T^{8} \)
23$C_2 \wr S_4$ \( 1 + 102 T + 38528 T^{2} + 3477336 T^{3} + 641077657 T^{4} + 3477336 p^{3} T^{5} + 38528 p^{6} T^{6} + 102 p^{9} T^{7} + p^{12} T^{8} \)
29$C_2 \wr S_4$ \( 1 + 240 T + 86430 T^{2} + 14441664 T^{3} + 3156579983 T^{4} + 14441664 p^{3} T^{5} + 86430 p^{6} T^{6} + 240 p^{9} T^{7} + p^{12} T^{8} \)
31$C_2 \wr S_4$ \( 1 - 351 T + 102010 T^{2} - 21726711 T^{3} + 4440563682 T^{4} - 21726711 p^{3} T^{5} + 102010 p^{6} T^{6} - 351 p^{9} T^{7} + p^{12} T^{8} \)
37$C_2 \wr S_4$ \( 1 + 399 T + 123385 T^{2} + 25924734 T^{3} + 6891314910 T^{4} + 25924734 p^{3} T^{5} + 123385 p^{6} T^{6} + 399 p^{9} T^{7} + p^{12} T^{8} \)
41$C_2 \wr S_4$ \( 1 - 381 T + 273692 T^{2} - 71526783 T^{3} + 28134293782 T^{4} - 71526783 p^{3} T^{5} + 273692 p^{6} T^{6} - 381 p^{9} T^{7} + p^{12} T^{8} \)
43$C_2 \wr S_4$ \( 1 + 460 T + 241338 T^{2} + 78643232 T^{3} + 29430041627 T^{4} + 78643232 p^{3} T^{5} + 241338 p^{6} T^{6} + 460 p^{9} T^{7} + p^{12} T^{8} \)
47$C_2 \wr S_4$ \( 1 + 60 T + 130548 T^{2} + 11848116 T^{3} + 16872903254 T^{4} + 11848116 p^{3} T^{5} + 130548 p^{6} T^{6} + 60 p^{9} T^{7} + p^{12} T^{8} \)
53$C_2 \wr S_4$ \( 1 + 873 T + 701906 T^{2} + 368908875 T^{3} + 161980949146 T^{4} + 368908875 p^{3} T^{5} + 701906 p^{6} T^{6} + 873 p^{9} T^{7} + p^{12} T^{8} \)
59$C_2 \wr S_4$ \( 1 + 855 T + 767616 T^{2} + 344685519 T^{3} + 195821792246 T^{4} + 344685519 p^{3} T^{5} + 767616 p^{6} T^{6} + 855 p^{9} T^{7} + p^{12} T^{8} \)
61$C_2 \wr S_4$ \( 1 - 687 T + 715504 T^{2} - 385624593 T^{3} + 235308406830 T^{4} - 385624593 p^{3} T^{5} + 715504 p^{6} T^{6} - 687 p^{9} T^{7} + p^{12} T^{8} \)
67$C_2 \wr S_4$ \( 1 - 503 T + 6753 p T^{2} - 193160692 T^{3} + 211333484900 T^{4} - 193160692 p^{3} T^{5} + 6753 p^{7} T^{6} - 503 p^{9} T^{7} + p^{12} T^{8} \)
71$C_2 \wr S_4$ \( 1 + 681 T + 1310019 T^{2} + 668258544 T^{3} + 678493576820 T^{4} + 668258544 p^{3} T^{5} + 1310019 p^{6} T^{6} + 681 p^{9} T^{7} + p^{12} T^{8} \)
73$C_2 \wr S_4$ \( 1 + 1228 T + 618972 T^{2} - 228294532 T^{3} - 319091414218 T^{4} - 228294532 p^{3} T^{5} + 618972 p^{6} T^{6} + 1228 p^{9} T^{7} + p^{12} T^{8} \)
79$C_2 \wr S_4$ \( 1 - 345 T + 1235121 T^{2} - 721148448 T^{3} + 716751093026 T^{4} - 721148448 p^{3} T^{5} + 1235121 p^{6} T^{6} - 345 p^{9} T^{7} + p^{12} T^{8} \)
83$C_2 \wr S_4$ \( 1 + 1509 T + 2187990 T^{2} + 1588008513 T^{3} + 1474125264218 T^{4} + 1588008513 p^{3} T^{5} + 2187990 p^{6} T^{6} + 1509 p^{9} T^{7} + p^{12} T^{8} \)
89$C_2 \wr S_4$ \( 1 + 198 T + 1184884 T^{2} - 492558966 T^{3} + 650980125750 T^{4} - 492558966 p^{3} T^{5} + 1184884 p^{6} T^{6} + 198 p^{9} T^{7} + p^{12} T^{8} \)
97$C_2 \wr S_4$ \( 1 - 372 T + 1910724 T^{2} - 1429297356 T^{3} + 2012229372278 T^{4} - 1429297356 p^{3} T^{5} + 1910724 p^{6} T^{6} - 372 p^{9} T^{7} + p^{12} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.81936069688978798794258917753, −7.43618518153468006850721299650, −7.41194028829944114252242778900, −6.89201888761160173383817232798, −6.84444533138151944876724310551, −6.61633688943850512381224082926, −6.35983015136586510353046705471, −6.22983970792024869598685961542, −5.99662961732310414147035106307, −5.71118728017690410099714629395, −5.32891851636064579769142003658, −5.19237331906725252855690917352, −5.15213361221366533394164205798, −4.47686612313386840621967119383, −4.47116725706159009045862706530, −4.16384234363807903758453929325, −4.05193223606088780308737484576, −3.60987410657514989769455004197, −3.24290710697824750109878141642, −3.04340975479234846257269107126, −2.50677041727243024138868843678, −2.21592716533737937001029061200, −1.50601465381175256344802350880, −1.21528244627024320896778762966, −1.17407424888893299363472116255, 0, 0, 0, 0, 1.17407424888893299363472116255, 1.21528244627024320896778762966, 1.50601465381175256344802350880, 2.21592716533737937001029061200, 2.50677041727243024138868843678, 3.04340975479234846257269107126, 3.24290710697824750109878141642, 3.60987410657514989769455004197, 4.05193223606088780308737484576, 4.16384234363807903758453929325, 4.47116725706159009045862706530, 4.47686612313386840621967119383, 5.15213361221366533394164205798, 5.19237331906725252855690917352, 5.32891851636064579769142003658, 5.71118728017690410099714629395, 5.99662961732310414147035106307, 6.22983970792024869598685961542, 6.35983015136586510353046705471, 6.61633688943850512381224082926, 6.84444533138151944876724310551, 6.89201888761160173383817232798, 7.41194028829944114252242778900, 7.43618518153468006850721299650, 7.81936069688978798794258917753

Graph of the $Z$-function along the critical line