Properties

Label 8-525e4-1.1-c1e4-0-12
Degree $8$
Conductor $75969140625$
Sign $1$
Analytic cond. $308.848$
Root an. cond. $2.04747$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·4-s + 9-s + 4·16-s + 10·19-s + 24·29-s − 10·31-s − 4·36-s + 48·41-s − 11·49-s − 12·59-s − 4·61-s + 16·64-s + 48·71-s − 40·76-s − 26·79-s + 12·89-s − 14·109-s − 96·116-s + 22·121-s + 40·124-s + 127-s + 131-s + 137-s + 139-s + 4·144-s + 149-s + 151-s + ⋯
L(s)  = 1  − 2·4-s + 1/3·9-s + 16-s + 2.29·19-s + 4.45·29-s − 1.79·31-s − 2/3·36-s + 7.49·41-s − 1.57·49-s − 1.56·59-s − 0.512·61-s + 2·64-s + 5.69·71-s − 4.58·76-s − 2.92·79-s + 1.27·89-s − 1.34·109-s − 8.91·116-s + 2·121-s + 3.59·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1/3·144-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 5^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(308.848\)
Root analytic conductor: \(2.04747\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{4} \cdot 5^{8} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.820815518\)
\(L(\frac12)\) \(\approx\) \(1.820815518\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2^2$ \( 1 - T^{2} + T^{4} \)
5 \( 1 \)
7$C_2^2$ \( 1 + 11 T^{2} + p^{2} T^{4} \)
good2$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 25 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^3$ \( 1 - 2 T^{2} - 285 T^{4} - 2 p^{2} T^{6} + p^{4} T^{8} \)
19$C_2^2$ \( ( 1 - 5 T + 6 T^{2} - 5 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^3$ \( 1 + 10 T^{2} - 429 T^{4} + 10 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
31$C_2^2$ \( ( 1 + 5 T - 6 T^{2} + 5 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2^3$ \( 1 + 25 T^{2} - 744 T^{4} + 25 p^{2} T^{6} + p^{4} T^{8} \)
41$C_2$ \( ( 1 - 12 T + p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 85 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^3$ \( 1 + 58 T^{2} + 1155 T^{4} + 58 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 6 T - 23 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 2 T - 57 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^3$ \( 1 + 85 T^{2} + 2736 T^{4} + 85 p^{2} T^{6} + p^{4} T^{8} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )^{4} \)
73$C_2^3$ \( 1 + 25 T^{2} - 4704 T^{4} + 25 p^{2} T^{6} + p^{4} T^{8} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )^{2}( 1 + 17 T + p T^{2} )^{2} \)
83$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 6 T - 53 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 94 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.84075259522825185955111820836, −7.81041586513481574412097072979, −7.58597406066573915460401618623, −7.09993691160973803001616038346, −6.81978965370785655899994689513, −6.75103492803242852751327424640, −6.32801687757455377943876200125, −6.05088864523935925593539434945, −5.92284392863499565909039897782, −5.46322416163517631314936764119, −5.27490307712484451120293809952, −5.13611756408748007217213322032, −4.68336931999107110531549574532, −4.50102697823097930090977823458, −4.37514452189771802736098331047, −4.15772028007840777377121972315, −3.85570900508396731422554963367, −3.36061847049378953327760695490, −3.11217103927366761642988700715, −2.83645989017408715754363012947, −2.31623614856788694332784806084, −2.24511596005071443987992856487, −1.07493006068174258266583642518, −1.06932122275175570233074872956, −0.64195063720172979189651612427, 0.64195063720172979189651612427, 1.06932122275175570233074872956, 1.07493006068174258266583642518, 2.24511596005071443987992856487, 2.31623614856788694332784806084, 2.83645989017408715754363012947, 3.11217103927366761642988700715, 3.36061847049378953327760695490, 3.85570900508396731422554963367, 4.15772028007840777377121972315, 4.37514452189771802736098331047, 4.50102697823097930090977823458, 4.68336931999107110531549574532, 5.13611756408748007217213322032, 5.27490307712484451120293809952, 5.46322416163517631314936764119, 5.92284392863499565909039897782, 6.05088864523935925593539434945, 6.32801687757455377943876200125, 6.75103492803242852751327424640, 6.81978965370785655899994689513, 7.09993691160973803001616038346, 7.58597406066573915460401618623, 7.81041586513481574412097072979, 7.84075259522825185955111820836

Graph of the $Z$-function along the critical line