Properties

Degree 2
Conductor $ 3 \cdot 5^{2} \cdot 7 $
Sign $-0.938 + 0.345i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (1.86 − 1.86i)2-s + (−0.707 + 0.707i)3-s − 4.93i·4-s + 2.63i·6-s + (−1.46 − 2.20i)7-s + (−5.45 − 5.45i)8-s − 1.00i·9-s − 1.46·11-s + (3.48 + 3.48i)12-s + (0.887 − 0.887i)13-s + (−6.82 − 1.38i)14-s − 10.4·16-s + (−2.10 − 2.10i)17-s + (−1.86 − 1.86i)18-s + 3.95·19-s + ⋯
L(s)  = 1  + (1.31 − 1.31i)2-s + (−0.408 + 0.408i)3-s − 2.46i·4-s + 1.07i·6-s + (−0.552 − 0.833i)7-s + (−1.92 − 1.92i)8-s − 0.333i·9-s − 0.441·11-s + (1.00 + 1.00i)12-s + (0.246 − 0.246i)13-s + (−1.82 − 0.370i)14-s − 2.61·16-s + (−0.510 − 0.510i)17-s + (−0.438 − 0.438i)18-s + 0.908·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.938 + 0.345i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.938 + 0.345i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(525\)    =    \(3 \cdot 5^{2} \cdot 7\)
\( \varepsilon \)  =  $-0.938 + 0.345i$
motivic weight  =  \(1\)
character  :  $\chi_{525} (118, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 525,\ (\ :1/2),\ -0.938 + 0.345i)\)
\(L(1)\)  \(\approx\)  \(0.373414 - 2.09189i\)
\(L(\frac12)\)  \(\approx\)  \(0.373414 - 2.09189i\)
\(L(\frac{3}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad3 \( 1 + (0.707 - 0.707i)T \)
5 \( 1 \)
7 \( 1 + (1.46 + 2.20i)T \)
good2 \( 1 + (-1.86 + 1.86i)T - 2iT^{2} \)
11 \( 1 + 1.46T + 11T^{2} \)
13 \( 1 + (-0.887 + 0.887i)T - 13iT^{2} \)
17 \( 1 + (2.10 + 2.10i)T + 17iT^{2} \)
19 \( 1 - 3.95T + 19T^{2} \)
23 \( 1 + (-4.13 - 4.13i)T + 23iT^{2} \)
29 \( 1 + 5.18iT - 29T^{2} \)
31 \( 1 + 6.10iT - 31T^{2} \)
37 \( 1 + (2.25 - 2.25i)T - 37iT^{2} \)
41 \( 1 - 0.769iT - 41T^{2} \)
43 \( 1 + (-5.18 - 5.18i)T + 43iT^{2} \)
47 \( 1 + (-8.57 - 8.57i)T + 47iT^{2} \)
53 \( 1 + (-0.544 - 0.544i)T + 53iT^{2} \)
59 \( 1 - 3.19T + 59T^{2} \)
61 \( 1 - 1.42iT - 61T^{2} \)
67 \( 1 + (-5.93 + 5.93i)T - 67iT^{2} \)
71 \( 1 - 7.62T + 71T^{2} \)
73 \( 1 + (-6.81 + 6.81i)T - 73iT^{2} \)
79 \( 1 + 4.52iT - 79T^{2} \)
83 \( 1 + (6.75 - 6.75i)T - 83iT^{2} \)
89 \( 1 + 1.19T + 89T^{2} \)
97 \( 1 + (8.68 + 8.68i)T + 97iT^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−10.88138171881148931737352914118, −9.851915508346145583574127154956, −9.412933353756084622598308226734, −7.53048932281546144316506661072, −6.31731013526821975831564061361, −5.43535508079413308942166580585, −4.51960253504174034322701199189, −3.64614473607745749047858655906, −2.69119050163102565057750394960, −0.887629859584194401596933729547, 2.61448537008343738216551572752, 3.77741652364369052511907977138, 5.12310673388687999807714959296, 5.59791521318975721190885110080, 6.67661837175734801789286576747, 7.10490298247417637995724753487, 8.347697309404411566078858672333, 8.998256469196311448434611331216, 10.60063609471081656165572849351, 11.70763579890556672372813061267

Graph of the $Z$-function along the critical line