Properties

Label 8-525e4-1.1-c1e4-0-10
Degree $8$
Conductor $75969140625$
Sign $1$
Analytic cond. $308.848$
Root an. cond. $2.04747$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 2·9-s + 8·11-s − 5·16-s − 8·19-s + 8·29-s + 24·31-s + 4·36-s − 8·41-s − 16·44-s − 2·49-s − 8·61-s + 20·64-s + 40·71-s + 16·76-s − 16·79-s + 3·81-s + 8·89-s − 16·99-s − 56·101-s + 8·109-s − 16·116-s + 36·121-s − 48·124-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  − 4-s − 2/3·9-s + 2.41·11-s − 5/4·16-s − 1.83·19-s + 1.48·29-s + 4.31·31-s + 2/3·36-s − 1.24·41-s − 2.41·44-s − 2/7·49-s − 1.02·61-s + 5/2·64-s + 4.74·71-s + 1.83·76-s − 1.80·79-s + 1/3·81-s + 0.847·89-s − 1.60·99-s − 5.57·101-s + 0.766·109-s − 1.48·116-s + 3.27·121-s − 4.31·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 5^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(308.848\)
Root analytic conductor: \(2.04747\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{4} \cdot 5^{8} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.640313712\)
\(L(\frac12)\) \(\approx\) \(1.640313712\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( ( 1 + T^{2} )^{2} \)
5 \( 1 \)
7$C_2$ \( ( 1 + T^{2} )^{2} \)
good2$C_2^2$ \( ( 1 + T^{2} + p^{2} T^{4} )^{2} \)
11$C_4$ \( ( 1 - 4 T + 6 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 6 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2$ \( ( 1 - 8 T + p T^{2} )^{2}( 1 + 8 T + p T^{2} )^{2} \)
19$D_{4}$ \( ( 1 + 4 T + 22 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 30 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
31$D_{4}$ \( ( 1 - 12 T + 78 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 + 20 T^{2} + 1558 T^{4} + 20 p^{2} T^{6} + p^{4} T^{8} \)
41$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 6 T^{2} + p^{2} T^{4} )^{2} \)
47$D_4\times C_2$ \( 1 + 4 T^{2} - 698 T^{4} + 4 p^{2} T^{6} + p^{4} T^{8} \)
53$D_4\times C_2$ \( 1 - 44 T^{2} + 982 T^{4} - 44 p^{2} T^{6} + p^{4} T^{8} \)
59$C_2^2$ \( ( 1 + 38 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
67$C_2^2$ \( ( 1 - 118 T^{2} + p^{2} T^{4} )^{2} \)
71$D_{4}$ \( ( 1 - 20 T + 222 T^{2} - 20 p T^{3} + p^{2} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 124 T^{2} + 9382 T^{4} - 124 p^{2} T^{6} + p^{4} T^{8} \)
79$D_{4}$ \( ( 1 + 8 T + 94 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 44 T^{2} - 6218 T^{4} - 44 p^{2} T^{6} + p^{4} T^{8} \)
89$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
97$D_4\times C_2$ \( 1 - 316 T^{2} + 42502 T^{4} - 316 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.981267605299237259145031309138, −7.84016183007058400081124506286, −7.21935505245924317746793034233, −6.86562297333964146479448047341, −6.68814616729191600085892820071, −6.63382353458533584844960279022, −6.57584905763154877516153030602, −6.23727846449937061979343872709, −6.05455873304888378213257825694, −5.60923465722218931541463447817, −5.33844204460762487397124468854, −4.87466340144551585498955815265, −4.75268583486554641602332119434, −4.45622046265954078035905775448, −4.40948195333990313019834533205, −4.10166618484140994166235037567, −3.74399786939497344700652267645, −3.56652838186879732080838600023, −3.00945220165908708346934988104, −2.59911001528112120346292553136, −2.57591457004942958066563330914, −1.99797892323627015853310780207, −1.52350592846779138233653270045, −0.999023699451648926557985551450, −0.50894266224716562366475865466, 0.50894266224716562366475865466, 0.999023699451648926557985551450, 1.52350592846779138233653270045, 1.99797892323627015853310780207, 2.57591457004942958066563330914, 2.59911001528112120346292553136, 3.00945220165908708346934988104, 3.56652838186879732080838600023, 3.74399786939497344700652267645, 4.10166618484140994166235037567, 4.40948195333990313019834533205, 4.45622046265954078035905775448, 4.75268583486554641602332119434, 4.87466340144551585498955815265, 5.33844204460762487397124468854, 5.60923465722218931541463447817, 6.05455873304888378213257825694, 6.23727846449937061979343872709, 6.57584905763154877516153030602, 6.63382353458533584844960279022, 6.68814616729191600085892820071, 6.86562297333964146479448047341, 7.21935505245924317746793034233, 7.84016183007058400081124506286, 7.981267605299237259145031309138

Graph of the $Z$-function along the critical line