Properties

Degree 2
Conductor $ 3 \cdot 5^{2} \cdot 7 $
Sign $-0.691 + 0.722i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.448 + 1.67i)3-s + (−1.73 + i)4-s + (−1.48 + 2.19i)7-s + (−2.59 − 1.50i)9-s + (−0.896 − 3.34i)12-s + (1.22 + 1.22i)13-s + (1.99 − 3.46i)16-s + (−6.06 − 3.5i)19-s + (−2.99 − 3.46i)21-s + (3.67 − 3.67i)27-s + (0.378 − 5.27i)28-s + (−3.5 − 6.06i)31-s + 6·36-s + (3.13 + 11.7i)37-s + (−2.59 + 1.5i)39-s + ⋯
L(s)  = 1  + (−0.258 + 0.965i)3-s + (−0.866 + 0.5i)4-s + (−0.560 + 0.827i)7-s + (−0.866 − 0.5i)9-s + (−0.258 − 0.965i)12-s + (0.339 + 0.339i)13-s + (0.499 − 0.866i)16-s + (−1.39 − 0.802i)19-s + (−0.654 − 0.755i)21-s + (0.707 − 0.707i)27-s + (0.0716 − 0.997i)28-s + (−0.628 − 1.08i)31-s + 36-s + (0.515 + 1.92i)37-s + (−0.416 + 0.240i)39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.691 + 0.722i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.691 + 0.722i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(525\)    =    \(3 \cdot 5^{2} \cdot 7\)
\( \varepsilon \)  =  $-0.691 + 0.722i$
motivic weight  =  \(1\)
character  :  $\chi_{525} (443, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 525,\ (\ :1/2),\ -0.691 + 0.722i)$
$L(1)$  $\approx$  $0.0991608 - 0.232243i$
$L(\frac12)$  $\approx$  $0.0991608 - 0.232243i$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad3 \( 1 + (0.448 - 1.67i)T \)
5 \( 1 \)
7 \( 1 + (1.48 - 2.19i)T \)
good2 \( 1 + (1.73 - i)T^{2} \)
11 \( 1 + (5.5 - 9.52i)T^{2} \)
13 \( 1 + (-1.22 - 1.22i)T + 13iT^{2} \)
17 \( 1 + (-14.7 - 8.5i)T^{2} \)
19 \( 1 + (6.06 + 3.5i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (-19.9 + 11.5i)T^{2} \)
29 \( 1 + 29T^{2} \)
31 \( 1 + (3.5 + 6.06i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (-3.13 - 11.7i)T + (-32.0 + 18.5i)T^{2} \)
41 \( 1 - 41T^{2} \)
43 \( 1 + (8.57 + 8.57i)T + 43iT^{2} \)
47 \( 1 + (40.7 - 23.5i)T^{2} \)
53 \( 1 + (45.8 + 26.5i)T^{2} \)
59 \( 1 + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (7 - 12.1i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (11.7 + 3.13i)T + (58.0 + 33.5i)T^{2} \)
71 \( 1 - 71T^{2} \)
73 \( 1 + (4.03 - 15.0i)T + (-63.2 - 36.5i)T^{2} \)
79 \( 1 + (-11.2 - 6.5i)T + (39.5 + 68.4i)T^{2} \)
83 \( 1 - 83iT^{2} \)
89 \( 1 + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (9.79 - 9.79i)T - 97iT^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−11.45401130562019846923429853260, −10.37314591934188407342344928662, −9.532971690634500070187126692691, −8.872217552990647105959058968558, −8.272601658455329572294112818778, −6.68899868283514566647051413569, −5.70488833000342999279551468166, −4.70665196259296541325720813516, −3.85502799983721659156756745342, −2.74115043137711010275371970412, 0.15639580552565112481927125143, 1.60926213708220245254329266252, 3.43980639058762795503950531318, 4.62068045745885237749571500630, 5.83813318000057896636948761288, 6.49381925041996839878111846329, 7.61178938258373859336754555409, 8.450427745755645015738360769683, 9.382939001221096535911975660772, 10.49972140333119699753342439745

Graph of the $Z$-function along the critical line